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Abstract

Background:Leishmania spp. protozoa cause leishmaniasis by infecting macrophages. Long non-coding RNAs (lncRNAs), such

as H19, Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT), HOX Antisense Intergenic RNA (HOTAIR), and TNF and

HNRNPL Related Immuno-regulatory lncRNA (THRIL), play a role in macrophage polarization and gene regulation. Additionally,

leukocytes can synthesize and respond to melatonin, yet the regulatory role of melatonin in Leishmania major-infected

macrophages is not well understood.

Objectives: This study aimed to assess the impact of melatonin on the expression of lncRNAs like H19, MALAT, HOTAIR, and

THRIL, as well as on nitric oxide synthase (NOS) activity in L. major-infected macrophages.

Methods:Leishmania major promastigotes and U937 cell lines were cultured. Macrophages were infected with the

promastigotes and subsequently treated with melatonin at concentrations of 3, 10, 30, and 100 nM for durations of 4, 24, and 48

hours. The expression levels of the lncRNAs and NOS activity were measured using quantitative Polymerase Chain Reaction (q-

PCR) and spectrophotometry, respectively.

Results: Melatonin treatment (100 nM) significantly increased the expression of H19 compared to the control after 48 hours (P =

0.002). There was also a significant upregulation of MALAT and HOTAIR in macrophages treated with 3 nM melatonin compared

to controls after 48 hours (P = 0.02 and P = 0.003, respectively). Additionally, THRIL expression significantly increased in the

melatonin group (10 nM) compared to the control after 4 hours of treatment (P = 0.003). An increase in NOS activity was

observed in the melatonin group (100 nM) compared to the control at 4 hours, 24 hours, and 48 hours (P = 0.034, P = 0.011, and P

= 0.014, respectively).

Conclusions: The findings suggest that melatonin may enhance the expression of H19, THRIL, MALAT, and HOTAIR, as well as

NOS activity in macrophages infected with L. major. The upregulation of these lncRNAs by melatonin could potentially improve

the macrophages' ability to combat L. major infection.
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1. Background

Leishmaniasis is an infectious disease prevalent in

subtropical and tropical regions. This disease, which

manifests various clinical characteristics, is caused by

intracellular Leishmania spp. protozoans (1). It is

estimated that annually, 20 000 - 30 000 deaths and 700

thousand to one million new cases occur (1-3). The

disease appears in several forms (4); the most common

is cutaneous leishmaniasis (CL), which poses a

significant public health challenge, particularly in the

Middle East (5). This infection is often overlooked

globally and predominantly affects individuals of lower

economic status in both developed and developing

countries (6). Leishmaniasis is transmitted when female

phlebotomus sandflies bite the skin of a host and

deposit promastigotes, which are then phagocytosed by

macrophages (7). Macrophages play a crucial role in

controlling infections through the production of nitric

oxide (NO) (8), which is synthesized by nitric oxide
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synthase 2 (NOS2) from the substrate L-arginine (9).

Numerous studies have demonstrated that immune

responses to infectious pathogens are dependent on the

expression of NOS2 (8-10).

Additionally, long non-coding RNAs (lncRNAs)

significantly influence the polarization of macrophages

(11) and have been shown to enhance host immunity and

responsiveness to various infections, including those

induced by Toxoplasma gondii (12), Schistosoma

mansoni (13), and Trichomonas vaginalis (14). Certain

lncRNAs play crucial roles in activating macrophages

and are key factors in immune responses to infections

(15). H19, metastasis-associated lung adenocarcinoma

transcript 1 (MALAT), HOX antisense intergenic RNA

(HOTAIR), and TNF and HNRNPL Related

Immunoregulatory Long Non-Coding RNA (THRIL) are

lncRNAs that regulate gene expression in macrophages.

They are instrumental in the differentiation,

polarization, and activation of macrophages, as well as

in the regulation of inflammatory responses (16, 17).

Therefore, influencing these lncRNAs may enhance

immune responses to infections.

A wide range of drugs is available for treating

leishmaniasis, including oral miltefosine, meglumine

antimoniate, sodium stibogluconate, paromomycin,

and amphotericin B (3, 18-20). However, issues such as

extended half-life, toxicity, the development of drug

resistance, and teratogenic effects make current therapy

options inadequate (21-23). Other factors, including

genetic and anthropometric characteristics,

geographical area, and particularly immune status, can

affect the efficacy of the medications used (24). These

challenges have prompted researchers to develop new

and innovative treatments to combat this infection.

Additionally, ongoing efforts are being made annually

to discover new inhibitors for this disease (25).

Melatonin, known as the "darkness hormone," is

produced by the pineal gland at night, regulated by the

central clock located in the suprachiasmatic nuclei of

the hypothalamus. It is also synthesized by immune-

competent cells and plays a role in monitoring

infections and aiding recovery during acute defense

responses (1). The role of melatonin in immune system

activities and the regulation of inflammatory processes

has been partially characterized; leukocytes are capable

of synthesizing and responding to melatonin (26, 27).

Previous studies have shown that melatonin is effective

in decreasing susceptibility to bacterial infections (28),

lethal endotoxemia (29), and several parasitic infections,

including those induced by S. mansoni (30),

Plasmodium falciparum and P. chabaudi (31),

Trypanosoma cruzi (32), L. infantum (33), and L.

amazonensis (34). However, various studies have

reported conflicting results regarding the regulatory

effects of melatonin on NO production (27, 35, 36).

2. Objectives

To the best of our knowledge, no studies have

investigated the effect of melatonin on the expression of

certain lncRNAs such as H19, MALAT, HOTAIR, and THRIL,

as well as NOS activity in L. major-infected macrophages.

Therefore, the current study was designed to evaluate

the regulatory effect of melatonin on the expression of

these lncRNAs and NOS activity in L. major-infected

macrophages.

3. Methods

3.1. Parasite Culture

Promastigotes of L. major (MRHO/IR/75/ER) were

obtained from the Iranian Biological Resource Center

(IBRC), Tehran, Iran. After confirmation via polymerase

chain reaction (PCR) technique, the promastigotes were

cultured in RPMI 1640 medium containing 100 μg/mL

streptomycin, 100 U/mL penicillin, 2 mM L-glutamine,

and 10% heat-inactivated Fetal Bovine Serum (FBS)

(Gibco, USA). Cultures were maintained at 25°C for one

week. In the stationary phase, the promastigotes were

carefully transferred to fresh medium at a ratio of 1:4 (6).

3.2. Cell Culture

U937 cell lines, pro-monocytic/human histiocytic

lymphoma cells, were acquired from the Pasteur

Institute Cell Bank, Tehran, Iran. The cells were

maintained in RPMI-1640 medium (Sigma-Aldrich

Chemical Co, St. Louis, MO, USA) supplemented with 100

μg/mL streptomycin, 100 U/mL penicillin, 2 mM L-

glutamine, and 10% heat-inactivated FBS (Gibco, USA),

and incubated at 37°C in a 5% CO2 atmosphere. The cells

were stimulated with phorbol myristic acid (PMA) for

three days to differentiate the monocytes into

macrophages. Upon reaching approximately 80%

confluency, the cells were passaged (6, 37).
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3.3. In Vitro Macrophage Infection

Macrophage infection was carried out as previously

described (6). Briefly, 1 × 106 cells/mL were seeded in a 6-

well plate and incubated at 37°C for 24 hours.

Subsequently, the macrophages were infected with

promastigotes and maintained at 37°C for 4 hours. Non-

phagocytosed promastigotes were removed by washing

with Phosphate-Buffered Saline (PBS). After the PBS

wash, the cells were treated with melatonin (98% purity,

CAS no. 73-31-4, Sigma, USA) at concentrations of 3, 10, 30,

and 100 nM for durations of 4, 24, and 48 hours.

Melatonin was dissolved in Dimethyl sulfoxide (DMSO).

This setup included a treated group (Leishmania-

infected macrophages treated with melatonin) and a

control group ( Leishmania-infected macrophages

treated with DMSO). Finally, all cells were harvested

using PBS containing 0.6 mM

Ethylenediaminetetraacetic acid (EDTA) and stored at

-80°C until further analysis. For confirmation of

Leishmania infection, samples were smeared on slides,

air-dried, fixed with methanol, and stained using the

Giemsa method. All slides were carefully examined

under a light microscope at a magnification of 1000x

(38).

3.4. RNA Extraction, Reverse Transcription, and
Quantitative PCR for lncRNAs

Initially, RNA samples were isolated using the AllPrep

DNA/RNA/miRNA Universal Kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instructions.

The quantity and quality of the RNA samples were

assessed using a NanoDrop Spectrophotometer (Thermo

Scientific, USA) and gel electrophoresis. Table 1 lists the

sequences of all primers used. Subsequently, cDNA

synthesis of lncRNAs was performed using a cDNA

synthesis kit (TaKaRa Bio, Tokyo, Japan) in a total volume

of 20 μL. The synthesized cDNAs were immediately

stored at -80°C for use in quantitative PCR (qPCR). The

relative expression of lncRNAs H19, MALAT, HOTAIR, and

THRIL was determined by qPCR using specific primers

and Real Q Plus 2X Master Mix Green High ROX™

(Amplicon, Denmark). Reactions were conducted on a

StepOne Plus™ instrument (ABI, USA) in a final volume

of 20 μL, containing 1 μL of cDNA, 10 μM of each primer

pair, 2X SYBR Green PCR Master Mix, and RNase-free

water. The expression of lncRNAs was normalized to

GAPDH expression as the internal control, and the delta-

delta CT protocol was used to calculate the relative

expression. All assays were performed in triplicate.

Table 1. Sequences of All Used Primers

Gene and
Forward/Reverse Primers

Sequence (5' - > 3') Product
Length

Tm

MALAT1 179

Forward GGATTCCAGGAAGGAGCGAG 59.89

Reverse ACATATTGCCGACCTCACGG 60.18

H19 119

Forward CGGCCTTCCTGAACACCTTAG 60.68

Reverse ATGTTGTGGGTTCTGGGAGC 60.25

HOTAIR 148

Forward TCTAACTGGCAGCACAGAGC 60.04

Reverse CAAAGTCCCGTTTGCAGCAG 60.32

THRIL 146

Forward TCCAAACTGAGACCTGGACC 58.94

Reverse CTGGGGATCACGACTGTCTC 59.54

GAPDH 100

Forward CAGCCTCAAGATCATCAGCAATG 60.0

Reverse CATGAGTCCTTCCACGATACCA 59.57

Abbreviation: Tm, melting temperature.

3.5. Quantification of NOS Activity

The nitrite (NO2-) content, indicative of NO

production, was measured in the supernatant cultures

of Leishmania-infected macrophages using the Griess

reaction, as previously described (39). As a standard, the

absorbance was measured at 540 nm following the

incubation of 50 μL of the solution containing N-

[naphthyl] ethylenediamine dihydrochloride (1 mg/mL),

5% phosphoric acid, and sulfanilamide (10 mg/mL) with

50 μL of the supernatant (39).

3.6. Statistical Analysis

The Shapiro-Wilk test was applied to assess the

normality of data. Differences among groups were

evaluated using one-way ANOVA with Tukey's HSD post

hoc test for normally distributed variables and the

Kruskal-Wallis H test for non-normally distributed

variables. Data for normally distributed variables were

presented as mean ± standard error of the mean (SEM),

and non-normally distributed data were presented as

the median and interquartile range (IQR). All analyses

were performed using IBM SPSS AMOS 21.0 (SPSS, Inc.,

Chicago, IL) and GraphPad Prism software, version 8

(GraphPad Software, CA). A P-value < 0.05 was

considered statistically significant.
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4. Results

Figure 1 displays L. major-infected macrophages

stained using the Giemsa method. Furthermore, Figures

2 - 6 illustrate the effects of various concentrations of

melatonin on the gene expression of H19, MALAT,

HOTAIR, THRIL, and NOS activity in L. major-infected

macrophages after treatments of 4, 24, and 48 hours,

respectively. Our findings indicate that the expression of

H19 increased approximately fourfold in the group

treated with melatonin at a dose of 100 nM compared to

the control group after 48 hours (Figure 2 P = 0.002).

However, no significant differences were observed

among other groups compared to the control group (P >

0.05). According to Figures 3C and 4C, a significant up-

regulation in the expression of MALAT and HOTAIR was

noted in L. major-infected macrophages treated with a

concentration of 3 nM of melatonin compared to the

control group after 48 hours of incubation (P = 0.02 and

P = 0.003, respectively). Nevertheless, there were no

significant differences in the expression of MALAT and

HOTAIR among other groups at different concentrations

of melatonin (P > 0.05).

Figure 1. Leishmania major-infected macrophages stained with Giemsa method. The
arrow indicates the location of the Leishmania protozoan.

Figure 2. Effect of different concentrations of melatonin on gene expression of H19
in Leishmania major-infected macrophages at 4 h (A), 24 h (B) and 48 h (C). The data
are presented as mean ± SEM.

Figure 3. Effect of different concentrations of melatonin on gene expression of
MALAT in Leishmania major-infected macrophages at 4 h (A), 24 h (B) and 48 h (C).
The data are presented as mean ± SEM.
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Figure 4. Effect of different concentrations of melatonin on gene expression of
HOTAIR in Leishmania major-infected macrophages at 4 h (A), 24 h (B) and 48 h (C).
The data are presented as mean ± SEM.

Figure 5. Effect of different concentrations of melatonin on gene expression of
THRIL in Leishmania major-infected macrophages at 4 h (A), 24 h (B) and 48 h (C). The
data are presented as mean ± SEM.

Figure 6. Effect of different concentrations of melatonin on nitric oxide synthase
(NOS) activity in Leishmania major-infected macrophages at 4 h (A), 24 h (B) and 48 h
(C). The data are presented as mean ± SEM.

Regarding the expression of THRIL, a significant

difference was observed in macrophages treated with a

concentration of 10 nM of melatonin compared to the

control group after 4 hours of treatment (P = 0.003).

However, there were no significant differences among

other groups compared to the control group at different

concentrations of melatonin (P > 0.05). Additionally, as

shown in Figure 6A and C, an increase in NOS activity

was detected in L. major-infected macrophages treated

with melatonin at a concentration of 100 nM compared

to the DMSO group after 4 hours, 24 hours, and 48 hours

of treatment (P = 0.034, P = 0.011, and P = 0.014,

respectively). Yet, no significant differences were

observed among other groups compared to the control

group at different concentrations of melatonin (P >

0.05).

5. Discussion

Leishmania protozoa are responsible for causing

leishmaniasis, which manifests a range of symptoms

including visceral, mucocutaneous, cutaneous, and

disseminated diseases (23). T helper-1 cells (Th1) secrete

cytokines such as interferon-gamma (IFN-γ) and

interleukin 12 (IL-12), which lead to immunity and

resistance to leishmaniasis. Conversely, Th2 cells

mediate susceptibility to infection, exacerbating the

disease through the production of IL-4, IL-5, and IL-10 (6).

Leishmania major employs various strategies to evade
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detection by the immune system, forming a symbiotic

relationship with its host to ensure its survival within

macrophages (9). Meanwhile, melatonin stimulates

antioxidant enzymes such as superoxide dismutase,

glutathione peroxidase, glutathione reductase, and

catalase, and inhibits lipoxygenase (40). Additionally,

leukocytes can synthesize and respond to melatonin

(26). Indeed, melatonin has been shown to decrease

susceptibility to bacterial (28) and parasitic infections

(30). Given the immunomodulatory properties of

melatonin and the key role of some lncRNAs in

modulating the immune system, this study was

designed to evaluate the regulatory effect of melatonin

on the expression of lncRNAs and NOS activity in L.

major-infected macrophages.

We observed an upregulation in the expression of

MALAT and HOTAIR in L. major-infected macrophages

treated with melatonin (3 nM) compared to the control

group after 48 hours of treatment. HOTAIR plays a

crucial role in activating NF-κB (an inducible

transcription factor involved in regulating

inflammation) in macrophages and has been identified

as a potential factor in immune responses to infections

(15). It is known that Leishmania spp. parasites can

inhibit NF-κB activity in macrophages infected with

promastigotes (39). Thus, the enhancing effect of

melatonin on this specific lncRNA may improve the

ability of macrophages to combat L. major infection.

Conversely, it has been reported that MALAT1 interacts

with the NF-κB factor, suppressing its activity and

potentially reducing the production of inflammatory

cytokines such as IL-6 and TNF-α. These contradictory

findings suggest that the regulatory effects of these

lncRNAs on the immune system are complex, and

maintaining a balance between them (HOTAIR and

MALAT1) is crucial (41).

Additionally, the results of this study show that the

expression of H19 was significantly increased in the

group treated with melatonin (100 nM) compared to the

control group after 48 hours of incubation. However, no

significant differences were observed among the other

groups compared to the control group. To the best of

our knowledge, this is the first study to evaluate specific

lncRNAs in L. major-infected macrophages. H19, one of

the earliest detected lncRNAs, primarily resides in the

cytoplasm and is located on chromosome 11p15.5 in

humans; it functions as a riboregulator or regulatory

RNA (42). Despite this, findings regarding H19 are

conflicting. This lncRNA plays key roles in the

inflammatory process, fibrosis, and some cancers (43-

45). Interestingly, H19 enhances M2 polarization (43) and

has been shown to act as a molecular sponge for let-7

(46). Moreover, in 2018, Hashemi et al. (47)

demonstrated that inhibition of let-7a in macrophages

could represent a novel approach to treating

leishmaniasis.

As previously mentioned, macrophages control

infections using NO produced by NOS2 (9). In contrast,

Arginase 1 (ARG1) is an immune-regulating enzyme that

can reduce NO production by macrophages (48, 49). Th1-

related cytokines such as IFN-γ, TNF, and GM-CSF activate

phenotype 1 macrophages by increasing NOS2

expression and decreasing ARG1 levels, thus controlling

the proliferation of Leishmania spp. parasites (50, 51). In

accordance with these findings, our study observed an

increase in NOS activity in the melatonin group at a

concentration of 100 nM compared to the DMSO/control

group after 4 hours, 24 hours, and 48 hours of

treatment. However, previous studies have shown that

melatonin has varying regulatory effects, both

increasing (35) and decreasing (34), on No production

(34, 35).

Furthermore, the expression of THRIL was

significantly increased in the melatonin group (10 nM)

compared to the control group after 4 hours of

treatment. Notably, THRIL is involved in the regulatory

expression of TNF-α in human monocytes (52, 53). TNF-α
is known as a factor that activates macrophages to kill

the Leishmania spp. parasite and plays an important

role in protective immunity in cutaneous leishmaniasis

(54). Therefore, the increase of THRIL mediated by

melatonin could potentially decrease this infection in L.

major-infected macrophages. However, further

complementary studies are required in this area. The

limitations of the present study include the lack of

evaluation of other species related to leishmaniasis, and

other lncRNAs and proteins associated with

inflammation. Future research is necessary to confirm

these findings and to understand their mechanisms.

Our findings demonstrated that melatonin could

increase the expression of H19 at a dose of 100 nM (after

48 hours), THRIL at a dose of 10 nM (after 4 hours),

MALAT and HOTAIR at a dose of 3 nM (after 48 hours), as

well as NOS activity at a dose of 100 nM (after 4, 24, and

48 hours) in L. major-infected macrophages. The
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changes occurred in a dose-time dependent manner.

More complementary studies are needed in this regard.

5.1. Conclusions

To the best of our knowledge, no studies have

investigated the effect of melatonin on the expression of

lncRNAs such as H19, MALAT, HOTAIR, and THRIL, as well

as NOS activity in L. major-infected macrophages. Our

findings indicate that melatonin could increase the

expression of H19, THRIL, MALAT, and HOTAIR, as well as

NOS activity in Leishmania major-infected

macrophages. The enhancing effect of melatonin on

these lncRNAs may improve the potential of

macrophages to combat L. major infection. Future

studies should consider evaluating the inhibition of

lncRNAs and NOS mRNA expression levels through

inhibitory transfection experiments to confirm the

results of the current study.
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