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Abstract

Background: Enterococcus spp., a part of the normal flora of the human intestine, possess several virulence factors that can de-
velop biofilms to endure harsh environments. Their ability to cause nosocomial infections makes them as critical opportunistic
pathogens in hospital settings.
Objectives: The current study aimed at determining the occurrence of 6 genes coding virulence factors and their ability to develop
biofilms, and conducting phenotypical assessments of haemolysin and gelatinase in clinical enterococci isolated from the West of
Iran.
Methods: A total of 126 isolates were screened for harbouring the following genes: aggregation substance (asa1), cytolysin (cylABM),
enterococcal surface protein (esp), and gelatinase (gelE). Isolates were tested for haemolysin and gelatinase expression phenotypi-
cally and for biofilm production quantitatively, using the microtiter method.
Results: Of the 126 tested isolates, 95 (73%) were Enterococcus faecalis and 28 (21%) were E. faecium. The total frequency of virulence
gene was cylA 92 (73%), cylB 85 (67%), cylM 57 (45%), asa1 26 (21%), gelE 64 (51%), and esp 66 (53%); while 98 (75%) of the isolates were able
to form biofilm. A total of 74 (58%) and 46 (35%) isolates could secret haemolysin and gelatinase.
Conclusions: There was a significant difference between the frequency of virulence gene in E. faecalis and E. faecium. Enterococcus
faecium isolates lacked the gelE and asa1 genes and the frequency of cylABM genes were lower than that of E. faecalis isolates. Ente-
rococcus faecalis isolates were relatively rich in virulence factors; no association was observed between biofilm formation and the
presence of specific virulence genes.

Keywords: Virulence Factor, Biofilm, Enterococcus Faecalis, Enterococcus Faecium

1. Background

Enterococci spp. are Gram-positive and catalase nega-
tive cocci, able to grow in the temperature range of 10ºC
to 45°C and media containing 6.5% NaCl (1). Enterococci
are the second or third most prevalent organism responsi-
ble for nosocomial infections (2). Among the 50 identified
species, Enterococcus faecium and E. faecalis are the most
medically significant ones. Enterococcus faecalis is the most
predominant species in hospital settings and accounts for
80% to 90% of nosocomial infections, compared to E. fae-
cium, which causes 1% to 5% of such infections (3, 4). Entero-
coccal infections commonly occur in patients hospitalised
for long periods and patients with severe chronic diseases
such as renal failure, neutropenia, transplantation, and
catheterisation. Important infections caused by entero-
cocci are urinary tract infections (UTIs), bacteraemia, en-
docarditis, intra-abdominal and pelvic disease, and wound
infections (2).

Enterococci are equipped with many genes encoding
virulence factors that enable them to survive in harsh envi-

ronments and sustain infection in vulnerable hosts. Some
virulence factors such as cytolysin (cylA, cylB and cylM),
gelatinase (gel-E), and aggregation substances (asa1) might
increase the severity of the infections (5). Cytolysin is the
main virulence factor of E. faecalis. The toxin is associated
with increased pathogenicity of enterococcal infections in
bacteraemia, endocarditis, and intraperitoneal infections
(6). Cytolysin, as a lantibiotic, can target and lyse bacterial
and mammalian cells (7-10). Nucleotide sequence deter-
mination for the cytolysin operon revealed a complex de-
terminant encoding 5 genetic markers, of which cylA, cylB,
and cylM are the most important ones (11, 12).

Observation of enterococcal biofilms on endodontic
surfaces, biliary duct stents, urinary catheters, heart valves,
and tissue surfaces suggested a correlation between the
lifestyle and virulence (13). Biofilm formation is report-
edly less common in E. faecium compared to E. faecalis, al-
though the clinical outcome of infections caused by E. fae-
cium may be worsening as a result of biofilm formation (14,
15). Biofilm production has profound effects on the devel-
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opment of endocarditis, periodontitis, and various device-
related infections, and also causes resistance to antibiotics
(16, 17).

Enterococcal surface protein (Esp) may induce persis-
tent UTIs and increase the ability of microorganisms to
colonise in hospitalised patients (18, 19). The correspond-
ing gene, esp, is more frequent in clinical E. faecalis and E.
faecium isolates, compared to environmental or food prod-
uct ones (20, 21). The esp expression is related to the pri-
mary bacterial adherence and biofilm formation (22, 23).
Gelatinase encoded by gelE gene is an extracellular zinc
metalloprotease that hydrolyses gelatine, collagen, casein,
haemoglobin, and antimicrobial peptides of the innate im-
mune system (24, 25). The asa1 is encoded by pheromone-
responsive plasmids, which often harbour antibiotic resis-
tance genes (26, 27). The protein causes clumping of E. fae-
calis cells and survival inside polymorphonuclear leuco-
cytes, internalisation by intestinal cells, and increases in
bacterial binding to cultured renal epithelial cells (28, 29).

2. Objectives

Considering the importance of bacterial virulence fac-
tors in the outcome of infections and lack of any compre-
hensive information about the prevalence of such factors
in clinical isolates of enterococci in Iran, the current study
aimed at investigating a possible relationship between the
biofilm formation ability and virulence factors of entero-
cocci isolated from clinical samples of an educational hos-
pital in Kermanshah province, West of Iran, and also the
role of virulence genes in biofilm development, and their
prevalence especially as high-biofilm-producing isolates.

3. Methods

3.1. Bacterial Isolation and Identification

Among 130 suspicious clinical samples collected from
January 2012 to April 2013, a total of 126 isolates were se-
lected for the current study; samples were taken mostly
from urine, blood, and body fluids samples. All samples
were cultured on bile esculin agar (Himedia, India); pos-
itive cultures (colonies with a black halo around them)
were confirmed at the species level using the standard bio-
chemical methods.

3.2. Hemolysin Production

Haemolysin activity was determined by an overnight
incubation of the isolates cultured on blood agar (Hime-
dia, India) supplemented with 5% defibrinated human
blood. A clear zone around the colonies indicated haemol-
ysis.

3.3. Gelatinase Production

A pure 24-hour culture was stabbed into tubes contain-
ing a 0.8% nutrient broth (Himedia, India) supplemented
with 12% gelatine. After 24 to 72 hours of incubation, tubes
were refrigerated for 30 minutes. Sufficient gelatinase pro-
duction by the isolates leads to liquefaction of cultured
media, even following the refrigeration; but the presence
of intact gelatine after refrigeration means a lack of ability
to produce gelatinase.

3.4. Biofilm Formation Assay

The test was conducted using the previously described
method (30). An overnight culture was diluted 1:100 into
a fresh tryptic soy broth (TSB) medium (Himedia, India)
supplemented with 1% glucose and inoculated into 96
polystyrene microplate wells. Following 18 hours of incu-
bation at 37°C, the plates were gently washed 3 times with
phosphate-buffered saline (PBS), air dried, and stained
with crystal violet. Biofilm bounded to crystal violet was
diluted with 200 µL of an 80:20 mixture of ethanol and
acetone and, then, optical density (OD) of the suspension
was measured at 570 nm, using an automatic spectropho-
tometer (Stat Fax ® 4200). The ability to form biofilm was
scored as follows: OD ≤ 0.120: non-producers, 0.120 ≤ OD
≥ 0.240: weak producers, and OD≥ 0.240: strong produc-
ers. As a control, the level of crystal violet binding to wells
was measured for the wells exposed only to the medium
without bacteria. All biofilm assays were performed in trip-
licate (31).

3.5. DNA Extraction

A loopful of pure enterococci culture on brain-heart in-
fusion (BHI) agar (Himedia, India) was suspended in micro-
tubes containing 0.5 mL sterile deionised water. The micro-
tubes were placed in a boiling water bath for 5 minutes,
centrifuged for 10 minutes at 10000 rpm, and the super-
natant were transferred to new tubes and used as DNA tem-
plates for the polymerase chain reaction (PCR).

3.6. Primer Design and PCR

The whole sequence of the enterococcus genome ID
number: 427183854, retrieved from the NCBI database, was
used as the template. On the basis of the retrieved se-
quence, 3 sets of primers were designed for E. faecalis and
E. faeciumddl genes, which were strain-specific genes and
enterococcus tuf gene, a genus-specific gene. Then, 6 sets
of primers were designed for asa1, esp, gelE, and cylABM. To
optimise the results, the multiplex PCR reaction for 2 sepa-
rate sets of genes was designed and performed. Enterococ-
cal Tuf gene, E. faecalis and E. faecium ddl genes, gelE, and
esp genes were placed in a set; cylMBA and asa1 were placed
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in another set, separately. The primer sequences were sum-
marized in Table 1.

Multiplex PCR reactions were performed with the ther-
mal cycler (Biorad, USA). The oligonucleotides for PCR am-
plification were purchased from Takapouzist Biotech Com-
pany (Iran). Reactions were performed in a total volume of
25 µL, using 0.75 pmol of each of the 4 primer sets, 7.5 µL
5X buffer, 50 mM MgCl2, 0.50µL dNTP 10 mM, and 1 U HStaq
DNA polymerase (Kappa Biosystem USA). The amplification
conditions were as follows: an initial denaturation step at
95°C for 1 minute; 34 cycles of denaturation at 95°C for 10
seconds; annealing at 55°C for 30 seconds for gelE, esp, en-
terococcus tuf, E. faecalis ddl, and E. faecium ddl; annealing
at 52°C for 30 seconds for cylA, cylB, cylM, and asa1, and ex-
tension at 72°C for 1 minute, followed by the final extension
at 72°C for 30 seconds. DNA from E. faecalis FI9190 was used
as a positive control in the corresponding PCR reactions.

The PCR products were subjected to electrophoresis
through 1% agarose gel, stained with ethidium bromide so-
lution, and visualised under the UV light in the Gel Docu-
mentation system (Biorad, USA). Images were analysed us-
ing Image Lab software version 2.0.

3.7. Statistical Analysis

All statistical analyses were performed using SPSS ver-
sion 21. Crosstabs, Chi-square, and the Fischer exact test
were performed based on the data. A P value of < 0.05 was
considered statistically significant.

4. Results

4.1. Bacterial Isolates Origin

Of the 126 clinical samples, 78 (60%) were isolated from
urine, 30 (23%) and 22 (17%) from blood and body fluids sam-
ples, respectively; 95 (73%) isolates were E. faecalis and 28
(21%) E. faecium.

4.2. Frequency of Extracellular Enzyme Secretion

In the current study, 74 (58%) isolates were haemolysin
producers, of which 51(68%) of E. faecalis and 20 (71%)
of E. faecium isolates showed haemolytic activity. Alpha
haemolytic strains were 26% of E. faecalis and 32% of E. fae-
cium isolates, while beta haemolytic strains were 27% of E.
faecalis and 39% of E. faecium. The results showed that 46
(35%) E. faecalis isolates could produce gelatinase. None of
the E. faecium could liquefy gelatine; therefore, 49.3% of the
E. faecalis isolates harbouring gelE did not show gelatinase
activity.

4.3. Capacity for Biofilm Formation

Overall, 98 (75%) of the isolates could form biofilm, of
which 75 (76%) and 23 (24%) were E. faecalis and E. faecium,
respectively.

4.4. Distribution of Biofilm Production Capacity Among Viru-
lence Marker

As many as 61 (92%) of all esp+ and 64 (87%) of isolates
that carried gelE gene could produce biofilm. Biofilm pro-
ducers were 55 out of 64 gelE+, and 51 out of 64 gelE- isolates;
the mean biofilm ODs for gelE+ was more than that of gelE-

isolates (2.033 versus 1.746) (Table 2). This trend was ob-
served in the esp-lacking isolates, the mean biofilm OD of
gelE+ isolates was higher than that of gelE- ones, but the dif-
ferent was not significant (mean OD, 1.747 for 24 esp- /gelE+

isolates versus 1.392 for 31 esp-/gelE- isolates), which sug-
gested a possible contribution of the gelE in biofilm for-
mation in the esp-lacking isolates (Table 2). It was also
noted that biofilm ODs were higher in 40 esp+/gelE+ iso-
lates (mean OD = 2.319). Moreover, the lowest mean of
OD for the 31 esp-/gelE- isolates (mean OD = 1.392) showed
that esp+ isolates produced more biofilm than the esp-

ones. A total of 26 esp+/gelE- isolates (mean OD= 2.103) also
produced high amounts of biofilm, but a little less than
esp+/gelE+ (mean OD = 2.319). This could constitute strong
evidence for the role of esp in biofilm formation in the ab-
sence of the gelE (Table 2).

However, even among the esp-lacking/gelE- isolates, 14
isolates produced strong biofilm and 8 isolates produced
medium biofilm. Further, no significant difference was ob-
served in the mean value of biofilm between the esp+ and
esp- isolates (ODs 1.569 vs. 2.211), indicating that neither esp
nor gelE was essential to biofilm production. The relation-
ship between biofilm formation capacities, OD values, esp,
and gelE are summarised in Table 2.

4.5. Frequency of Virulence Genes

The number of virulence marker genes in E. faecalis iso-
lates varied from 1 to 6. The majority of E. faecalis isolates
were positive for 4 virulence genes, but most of E. faecium
isolates were positive for 3 virulence genes (Table 3). Of the
95 E. faecalis isolates, 10 (9.7%) were positive for 6 virulence
genes, whereas 90 (91.9%) were positive for 2 or more vir-
ulence genes. None of E. faecium isolates was positive for
cylABM, while 46 (48%) of E. faecalis strains harboured a cy-
lABM complete set of genes. Among E. faecalis and E. faecium
isolates, the cylM gene had a significantly lower incidence
(Table 3).

The amplification results of enterococcal tuf gene, E.
faecalis, and E. faecium ddl genes, gelE, and esp genes are il-
lustrated in Figure 1A and those of cylMBA and asa1 in Figure
1B.

Jundishapur J Microbiol. 2017; 10(7):e14379. 3

http://jjmicrobiol.neoscriber.org


Kashef M et al.

Table 1. Designed Primers Sequences

Primer Name Virulence Factor Oligonucleotide Sequence (5’to 3’) Amplicon Size, bp Reference

E. faecium F
Faecium species

GAAGGACAATGGGTCAAAGG
596 The current study

E. faecium R ACT TCG CCA GGC AAA GTC

Enterococcus spp. F
Enterococcus genus

TAC TGA CAA ACC ATT CAT GAT G
109 The current study

Enterococcus spp. R TTC GTC ACC AAC GCG AAC

E. feacalis ddl F
faecalis species

CCA CAA GTA CCA TTC GTG C
305 The current study

E. feacalis ddl R GCG ACA TCT TTC ACC ACT TC

esp F
Enterococcal surface protein

GGT ATG GGT TCA ATC ACT GAC
714 The current study

esp R CTC TGC ATC TTC AGG TAA G

gelE F
Gelatinase

GAC CAG AAC AGA TTC ACT TG
409 The current study

gelE R GGA TAC TCA GAG TGT TGA CC

cylM F

Cytolysin

AGG GAG ACT CTC ATA GTC G
801 The current study

cylM R CAG CAT ATC TTT GAG TTG GTC

cylA F GAT ATA ATA AAC GTG AGT CTT GG
238 The current study

cylA R AGT CAG CAA TAT CAC CAC TC

cylB F CTG GCT GGA TTG TTA CAA CC
526 The current study

cylB R GAT CTT CAT GCT TTC CAA TAC

asa1 F
Aggregation substance

CAA GAA CAA CCA GTA GTA AGC
960 The current study

asa1 R TGA ATT TAA TGA AGC ACC TG

Table 2. Biofilm Formation Quantity Based on the Presence of esp/gelE Gene

Virulence Factor OD of Isolates with

Strong Biofilm Formation, (OD570
≤ 2)

Medium Biofilm Formation,
(OD570, 1 - 2)

Weak Biofilm Formation, (0.5 ≤
OD570 ≥ 1)

No Biofilm Formation, (OD570 ≤
0.5)

Mean ± SD, P value

Esp+ /gelE+ 2.419 (2.783 - 2.132) (34) 1.284, (1.074 - 1.494) (2) 0.883 (2) 0.204 (1) 2.319 (2.783 - 0.204) (40) (0.57) 0.053

Esp+ /gelE- 2.650 (2.947 - 2.048) (17) 1.618 (1.855 - 1.154) (6) 0.783 (0.652 - 0.914) (2) 0.209 (1) 2.103 (2.813 - 0.209) (26) (0.79) 0.263

esp- /gelE+ 2.440 (2.674 - 2.190) (8) 1.516 (1.988 - 1.108) (12) 0.756 (0.658 - 0.854) (2) 0.115 (0.121 - 0.111) (2) 1.206 (2.718 - 0.111) (24) (0.76) 0.925

esp- /gelE- 2.611(2.993 - 2.000) (14) 1.461 (1.986 - 1.005) (8) 0.595 (0.661 - 0.579) (8) 0.028 (0.025 - 0.031) (7) 1.392 (2.993 - 0.025) (31) (0.94) 0.196

Total 73 28 14 11 126

Table 3. Frequency of Virulence Genesa

Variables cylA cylB CylM cylABM Asa1 cylABM, asa1 gelE esp gelE, esp

E. faecalis 83 (87) 77 (81.1) 52 (54.4) 46 (59) 26 (27) 17 (36) 64 (67) 55 (59) 52 (41)

E. faecium 9 (32) 8 (28) 5 (17) 0 0 0 0 11 (40) 0

Total (126) 92 (73) 85 (67) 57 (45) 46 (37) 26 (21) (14.38) 64 (51) 66 (53) 41 (33)

a Values are expressed as No. (%).

5. Discussion

Enterococcus is among the 4 most common causes of
nosocomial infections worldwide. Due to its intrinsic re-
sistance to antimicrobial agents and harsh environments,
it can survive and spread in hostile niches, such as hospi-
tals. In enterococcal infections, biofilm plays an essential
role by providing a context to enhance microbial survival
in the host (32-34). Several studies were conducted to iden-
tify the virulence factors of enterococci and their possible
association with biofilm formation, but this issue is not yet
well understood. To reduce the rate of nosocomial infec-

tions and implement the correct treatment strategies, it is
vital to obtain reliable knowledge on bacterial capacities
and their virulence factors (17, 32, 33, 35-39).

The current study aimed at evaluating the frequency
of several virulence factors in clinical enterococcal isolates
and their relationship with biofilm production. Therefore,
a multiplex PCR was designed to simultaneously detect tuf
(Enterococcus genus), ddl (E. faecalis species), ddl (E. faecium
species), gelE (gelatinase), esp, cylA, cylB, cylM (cytolysin),
and asa1. All 126 isolates were analysed for the presence of
virulence genes by the researcher-designed primers. The
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Figure 1. Figure 1

A, From left to right: Lane 1, Sinacolon 100 bp DNA marker; Lane 2, Positive control of 109, 305, 409, and 714 bp of targeted genes; Lane 3, Negative control; Lane 4 - 13, Elec-
trophoresis of PCR products. B, From left to right: Lane 1, Sinaclon 100 bp DNA marker; Lane 2, Positive control of 238, 526, 801 and 960 bp of targeted gene; Lane 3, Negative
control; Lane 4 - 12, Electrophoresis of PCR products.

results are presented in Table 3, which revealed a relatively
high incidence of virulence factors among isolates. The fre-
quencies of all 6 virulence factors were significantly high
in E. faecalis than E. faecium (Table 3). Previous observations
revealed a higher rate of clinical isolates harbouring esp
compared to the isolates from other resources (19, 21).

In the present study, the prevalence of esp was consis-
tent with those of other studies in Iran and other parts of
the world, although some studies failed to find esp+E. fae-
cium (18, 36, 40, 41). The Esp has a role in colonisation and
persistence of E. faecalis in the urinary tract (18). Since most
isolates in the current study were isolated from UTIs, a high
incidence of esp was not surprising. The Esp protein has a
high sequence similarity with Bap (biofilm-associated pro-
tein of Staphylococcus aureus); thus, this protein may be
important for biofilm formation (42). Di Rosa suggested
that the synergy between esp and biofilm formation helps
to establish a successful infection (43). The current study
also detected the ability of enterococcal isolates to form
biofilms and their possible relationship with esp.

According to the literature, all enterococcal strains iso-
lated from urinary and blood stream sources can produce
biofilm, with a rate typically higher than that of the cur-
rent study (30, 42, 44). Despite the lack of a significant asso-
ciation between Esp and biofilm formation in the current
study, other researches reported conflicting results about
the role of E. faecalis Esp in biofilm formation (23, 42, 43,
45-48). Although biofilm formation in esp-deficient mu-
tants of E. faecalis was not reported in all studies, many oth-
ers report no correlation between the presence of esp and

biofilm formation, which is a multifactorial process (49,
50).

Gelatinase, another virulence factor of E. faecalis, was
also detected in the current study. The frequency of gelE
was the same as those of previous studies (5, 44, 51), which
also could not detect this gene in E. faecium isolates, al-
though many E. faecalis isolates harboured it (52). Fur-
thermore, phenotypical expression of gelE, which leads to
the secretion of gelatinase, was assessed and many gelE+E.
faecalis isolates failed to secrete gelatinase. A reason for
the phenomenon could be that the presence of a specific
gene does not automatically mean phenotypic expression
of that gene. This could explain the presence of the gelE+

isolates, which were unable to liquefy gelatine (53-56).

Despite demonstrations about the necessity of gelati-
nase enzymatic activity to establish biofilm (45), the cur-
rent study found no difference in the in vitro biofilm
production between gelE+ and gelE- isolates; which indi-
cated that, similar to esp, neither gelE, nor gelatinase was
required for biofilm formation. In summary, although
biofilm production was higher in esp+/gelE+ compared to
esp-/gelE- isolates, no significant difference was observed in
biofilm production ability between gelE+ and gelE- isolates.
The asa1 was not found in any of the E. faecium strains in-
vestigated in the current study. In other studies, asa1 was
detected only in E. faecalis strains (28, 44, 51, 54, 57). Udo
reported a relatively similar frequency of asa1; Moniri and
Seno reported a higher frequency (41, 58, 59).

Cytolysin can induce tissue damage through the ly-
sis of erythrocytes and polymorphonuclears (PMNs) (60).
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Cytolysin production could also significantly deteriorate
the severity of endocarditis (7). Investigation of cytolysin
genes revealed the presence of cylA, cylB, and cylM in a high
proportion of E. faecalis and a low proportion of E. faecium
isolates, but in the studies by Udo, Moniri, and Cosentino,
the prevalence of cylA, cylB, and cylM were lower than those
of the current study (41, 59, 61). However, Abriouel reported
a higher frequency of cyl operon in E. faecalis, although
with lower haemolytic activity (62).

Enterococcus faecalis isolates harboured 1 to 6 virulence
markers, similar to a report by a Brazilian study in which E.
faecalis isolates harboured 1 to 8 virulence-associated genes
(63). The current study observed the dominance of some
genes or gene combinations. The most common combina-
tions of virulence genes were cylA and cylB (76%) for E. fae-
calis, and cylM and cylA 1 (12%) for E. faecium isolates. Among
all E. faecalis isolates, 9 isolates had 6 virulence markers, all
of which were strong biofilm producers.

All E. faecalis isolates harboured more than 1 virulence-
associated gene, suggesting that E. faecalis infection de-
pended upon the transaction of several genes bound to
the secretion and regulation of the expression of the vir-
ulence factors. The small number of E. faecium isolates was
the limitation of the current study. However, the current
study reinforced the well-known characteristics of E. fae-
calis species in terms of its virulence, and confirmed that
biofilm formation was a multifactorial process requiring
different genes and their products.

5.1. Conclusion

In conclusion, E. faecalis strains isolated from UTIs were
characterised by higher-virulence strains from other clin-
ical sources. Enterococcus faecium was involved in impor-
tant processes such as initiating colonisation, infection in
the host, and biofilm formation. Overall, esp was not re-
quired for biofilm formation, but its presence was signif-
icantly associated with a higher proportion of biofilm pro-
duction in clinical isolates. Therefore, the genotypic and
phenotypic assays appear necessary for a better character-
isation of the strains, due to silent virulence genes (cyl and
gelE). The current study results may serve as a basis for the
additional surveillance studies of infections caused by this
microorganism.
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