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Abstract

Background:Pseudomonas aeruginosa significantly contributes to hospital-acquired infections.

Objectives: This study aimed to investigate the genetic diversity of P. aeruginosa strains using multiple-locus variable-number

tandem repeat analysis (MLVA) and to explore the relationship between biofilm production and antibiotic resistance.

Methods: In this cross-sectional study, 79 P. aeruginosa isolates were collected. Antibiotic sensitivity was tested using the Kirby-

Bauer method, and biofilm production capability was assessed through the microtiter plate method. Genetic diversity was

evaluated by MLVA, analyzing eight variable-number tandem repeat (VNTR) loci: MS-213, MS-214, MS-207, MS-217, MS-222, MS-209,

MS-77, and MS-172. Phylogenetic relationships were delineated using PHYLOViZ 2.0 software.

Results: The patient cohort comprised 51.9% males, with the majority of samples (35.4%) obtained from urine. Ceftazidime (CAZ

30µg) showed the highest resistance rate at 77.2%. Notably, 92.4% of isolates were capable of forming biofilms, categorized as

22.7% weak, 28.7% moderate, and 46.5% strong. Phylogenetic analysis demonstrated variability across one or more VNTR loci.

Simpson’s index (0.906) and Shannon-Weiner diversity indices (H: 3.466, J: 0.910, Hmax: 3.807, Hmin: 1.242) identified MS77 as

the most informative marker for genetic diversity among the isolates.

Conclusions: The study highlights an alarming trend in antibiotic resistance, underscoring the necessity of regular

monitoring. The findings confirm that MLVA is a straightforward, rapid genotyping method suitable for assessing the genetic

diversity of P. aeruginosa.
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1. Background

Pseudomonas aeruginosa, characterized by its rod-

shaped morphology and Gram-negative nature, exhibits

exceptional adaptability to various environmental

conditions, establishing it as a notable opportunistic

pathogen in hospital environments (1). The global

prevalence of multidrug-resistant (MDR) strains poses a

formidable challenge to effective treatment strategies

for P. aeruginosa (2). The formation of biofilms by P.
aeruginosa is a major challenge in the progression of

persistent infections, especially in cases of cystic fibrosis

and burn injuries. Strains that produce biofilms show

significant resistance to antimicrobial substances. A

biofilm is defined as a complex assembly of microbial

cells enveloped by extracellular substances, including

proteins, exopolysaccharides (EPS), and extracellular

DNA (eDNA), playing a critical role in these processes (3-
5).

Various phenotypic and genotypic methods are
available for analyzing longitudinal surveys of sources

(6). Phenotypic subtyping methods generally exhibit
low sensitivity and discrimination and are challenging

to reproduce. In contrast, genotypic methods are

recognized for their higher sensitivity and reliability (7).
Several genotypic methods have been developed for

bacterial typing, including repetitive element
palindromic PCR (rep-PCR), restriction fragment length
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polymorphism (RFLP), ribosomal DNA (ribotyping),

random amplification of polymorphic DNA (RAPD),

multilocus sequence typing (MLST), and pulsed-field gel
electrophoresis (PFGE). Each of these methods has its

disadvantages (8). For instance, although PFGE,
considered the gold standard typing method, exhibits

high discrimination power, it is also known to be time-

consuming, expensive, and challenging to interpret (9).

In recent years, multiple-locus variable-number

tandem repeat analysis (MLVA) has emerged as a

prominent method for typing P. aeruginosa strains. This

molecular typing technique subtypes microbial isolates

based on repeated DNA sequences at defined loci

(VNTR). Notably, MLVA offers high discriminatory power

and high-throughput screening, making it cost-

effective, easily implementable, rapid, and reliable.

Consequently, MLVA is well-suited for interlaboratory

comparisons during epidemiological investigations of

infections and is increasingly preferred for molecular

typing of bacteria (10).

2. Objectives

The present study aimed to investigate the
antimicrobial profiles and genetic diversity of biofilm-

producing P. aeruginosa strains using the MLVA method.

3. Methods

3.1. Sampling and Identification

This cross-sectional study was conducted over one

year (2020 - 2021) and involved collecting 79 non-

repetitive clinical isolates from hospitalized patients at

Rohani Hospital in Babol, northern Iran. Routine

identification methods were used to confirm the

identity of each isolate as P. aeruginosa. These methods

included observing colony morphology and pigment

production, performing Gram staining, oxidase test,

triple sugar iron (TSI) agar, sulfur indole motility (SIM)

test, Simmons citrate, and oxidative-fermentative (OF)

test (Merck, Darmstadt, Germany), and assessing growth

at 42°C. Isolates were preserved in brain-heart infusion

broth (Becton Dickinson, Franklin Lakes, NJ)

supplemented with 20% (v/v) glycerol (Merck Co.,

Germany) and stored at -80°C. P. aeruginosa ATCC 27853

was used as the control.

3.2. Antimicrobial Susceptibility Testing (AST)

Antibiotic resistance profiles were determined using

the following antibiotics: Piperacillin (PRL, 100 µg),

piperacillin-tazobactam (PTZ, 100/10 µg), ticarcillin (TC,

75 µg), ticarcillin-clavulanate (TCC, 75/10 µg),

levofloxacin (LEV; 5 µg), ceftazidime (CAZ; 30 µg),

ceftriaxone (CRO, 30 µg), imipenem (IPM; 10 µg),
chloramphenicol (CHL, 30 µg), gentamicin (GM; 10 µg),

ciprofloxacin (CIP; 5 µg), and tetracycline (TET; 30 µg)
(MAST Diagnostics, Merseyside, UK). The disk agar

diffusion (DAD) method was used on cation-adjusted

Mueller-Hinton agar (Merck, Darmstadt, Germany)
following Clinical and Laboratory Standards Institute

(CLSI) guidelines (11).

3.3. Biofilm Production Assay

The microtiter plate assay was used to quantitatively

assess biofilm production. Briefly, 200 µL of diluted
bacterial culture from a 24-hour growth in brain-heart

infusion (BHI) broth was inoculated into a 96-well plate.
After incubation at 37°C for 24 hours, wells were washed

twice with phosphate-buffered saline (PBS, pH 7.2) to

remove unattached 'planktonic' bacteria. Plates were
then vigorously shaken to eliminate all non-adherent

bacteria and air-dried at 25°C to fix the biofilm. The
biofilm was stained with 200 µL of 0.1% crystal violet

(Sigma, St Louis, USA) for 5 minutes at 25°C, followed by
washing and air-drying. Optical density (OD) was

measured at 570 nm using an ELISA reader (BioTek, Bad

Friedrichshall, Germany). All tests were performed in
triplicate. Biofilm production was categorized based on

the cut-off value (ODc) as non-biofilm (OD570 < 1), weak
(1 < OD570 < 2), moderate (2 < OD570 < 3), and strong

(OD570 > 3) (12).

3.4. DNA Extraction

Template DNA was extracted from fresh colonies

utilizing the Bacteria Genome DNA Extraction Kit

(TaKaRa, Dalian, China) and subsequently stored at –

20°C. The purity of the extracted DNA was evaluated

using a NanoDrop ND-1000 spectrophotometer (Thermo

Fisher Scientific, USA), and both the quantity and quality

were determined with a Qubit Fluorometer (Thermo

Fisher Scientific).

3.5. Multiple-Locus Variable-Number Tandem Repeat
Analysis Typing

As detailed in Table 1, MLVA typing employed eight

loci: MS-213, MS-214, MS-207, MS-217, MS-222, MS-209, MS-

77, and MS-172. PCR was performed in a total volume of

25 µL, including 2.0 µL of template DNA, 11.5 µL Maxima

Hot Start PCR Master Mix (2 ×) (Fermentas GmbH, St.

Leon-Rot, Germany), 0.75 µL of each primer, and 10.0 µL

of ddH2O. The cycling conditions in a Techne TC-512

thermocycler (Eppendorf, Hamburg, Germany) were as
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Table 1. Eight Variable-Number Tandem Repeat Loci Used in the Study for Pseudomonas aeruginosa Typing

Locus Name Primer Sequences (5ʹ → 3ʹ) Product Size (bp) References

MS-213 103

(13)

Forward 5ʹ -TGGCGTACTCCGAGCTGATG-3ʹ

Reverse 5ʹ -CTGGGCAAGTGTTGGTGGARC-3ʹ

MS-214 115

Forward 5ʹ -CCATCATCCTCCTACTGGGTT-3ʹ

Reverse 5ʹ -AAACGCTGTTCGCCAACCTCTA-3ʹ

MS-222 101

Forward 5ʹ -TGCAGTTCTGCGAGGAAGGCG-3ʹ

Reverse 5ʹ -AGAGGTGCTTAACGACGGAT-3ʹ

MS-209 148

(10)

Forward 5ʹ -CAGCCAGGAACTGCGGAGT

Reverse 5ʹ -CTTCTCGCAACTGAGCTGGT

MS-217 606

Forward 5ʹ - TTCTGGCTGTCGCGACTGAT -3ʹ

Reverse 5ʹ - GAACAGCGTCTTTTCCTCGC -3ʹ

MS-207 146

Forward 5ʹ - ACGGCGAACAGCACCAGCA -3ʹ

Reverse 5ʹ - CTCTTGAGCCTCGGTCACT -3ʹ

MS-77 442

Forward 5ʹ - GCGTCATGGTCTGCATGTC -3ʹ

Reverse 5ʹ - TATACCCTCTTCGCCCAGTC -3ʹ

MS-172 789

Forward 5ʹ - GGATTCTCTCGCACGAGGT -3ʹ

Reverse 5ʹ - TACGTGACCTGACGTTGGTG -3ʹ

follows: An initial denaturation at 94°C for 3 minutes,

followed by 35 cycles of 94°C for 30 seconds, 67°C for 25

seconds, 72°C for 25 seconds, and a final extension at

72°C for 4 minutes. PCR products were visualized under

UV light after electrophoresis at 100 V for 50 minutes on

a 2.0% agarose gel stained with DNA safe stain (SinaClon,

Tehran, Iran). Amplicon sizes were calculated using

GeneTools software from SynGene version 8.3 (10).

3.6. Data Analysis

To construct the evolutionary diagram, data were

input into the genotyping software available at

http://mlva.u-psudFr/mlvav4/. The dendrogram for the

isolates was generated using the class coefficient and

the UPGMA algorithm. Strains with 82% or greater

similarity in the number of repetitions based on the

difference in 2 VNTR loci (DLV) were grouped into one

type, while others were categorized into different types.

The size of the PCR product for each VNTR was

determined using a gel documentation device during

gel electrophoresis. These sizes were then analyzed

using GeneTools software from SynGene version 8.3. The

number of allelic profiles for each locus was calculated

using a specific formula, and data were entered into

Excel for further analysis. Subsequently, the data were

processed using PHYLOViZ 2.0 software to draw the

evolutionary diagram (5).

3.7. Statistical Analysis

The relationship between categorical variables,

including biofilm characteristics and antimicrobial

resistance, was analyzed using the chi-square test with

SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). A P-value

of less than 0.05 was considered statistically significant.

4. Results

A total of 79 P. aeruginosa isolates were collected, with

51.9% (n = 41) from male and 48.1% (n = 38) from female

patients. The distribution of samples according to

origin is shown in Figure 1. Urine samples constituted

the majority (35.4%, n = 28), while cerebrospinal fluid

http://mlva.u-psudfr/mlvav4/
http://mlva.u-psudfr/mlvav4/
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Figure 1. A minimum spanning tree algorithm based on multiple-locus variable-number tandem repeat analysis (MLVA) markers for Pseudomonas aeruginosa. Each circle
represents a unique type, with its size indicating the number of strains with that specific type. Connections between the strains and the lengths of the branches linking them
illustrate the relationships. Thick black lines connecting pairs of MLVA types indicate a difference in one variable-number tandem repeat (VNTR) locus. The number on each
circle signifies 100% identity among them.

(CSF) samples were the least common (1.3%, n = 1). Other

sources included respiratory tract [bronchoalveolar

lavage (BAL), sputum, and endotracheal tubes (ETT)],

wounds, blood, and skin lesions, in descending order of

frequency. Distribution by hospital department was as

follows: ICU (40.5%, n = 32), infectious disease (27.8%, n =

22), emergency (17.7%, n = 14), surgery (7.5%, n = 6), and

hemodialysis (6.3%, n = 5). Figure 2 displays the highest

resistance rates observed for CAZ at 77.2% (n = 61), CHL at

65.8% (n = 52), CRO at 53.2% (n = 42), tetracycline (TET) at

40.5% (n = 32), and LEV at 37.9% (n = 30). Resistance to

other antimicrobials included CIP at 17.7% (n = 14), GM at

12.6% (n = 10), PRL at 8.8% (n = 7), TC at 2.5% (n = 2), and

ticarcillin-clavulanate (TCC) at 1.3% (n = 1). No resistance

to PTZ was observed. Resistance to imipenem (IMP) was

found in 36.7% (n = 29) of isolates, categorizing them as

Carbapenem-resistant P. aeruginosa (CRPA). Multidrug-

resistant isolates constituted 43.6% (n = 51). Biofilm

formation was noted in 92.4% (n = 73) of isolates,

classified as weak in 22.7% (n = 18), moderate in 28.7% (n =

21), and strong in 46.5% (n = 34). A minor portion, 7.5% (n

= 6), did not exhibit biofilm production.

Genetic diversity among strains was evaluated using

the MLVA method targeting eight loci: MS-213, MS-214,

MS-209, MS-217, MS-222, MS-207, MS-77, and MS-172. The

phylogenetic tree illustrated variations among bacterial

isolates, with allelic differences observed at one (12

isolates), two (14 isolates), and three (21 isolates) VNTR
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Figure 2. Phylogenetic tree based on the multiple-locus variable-number tandem repeat analysis (MLVA) markers in this study

loci. Other isolates exhibited variations at more than

four loci, indicating significant genetic diversity (Figure

1).

Notably, no isolates had VNTR sequences similar
enough to be classified in the same clade, highlighting

the extensive genetic diversity of the isolates.
Particularly, two wound isolates, both forming strong

biofilms, exhibited genetic relatedness across loci 1, 1, 3,

4, 2, 17, 10, and 5. Additionally, four isolates, including
two strong and two moderate biofilm producers, were

related across loci 13, 24, 1, 3, 2, 10, and 6. Of these, three

were sourced from wound samples, and one from a skin

lesion. Moreover, three strains isolated from

bronchoalveolar lavage (BAL) samples, all showing

strong biofilm formation, demonstrated genetic

relatedness across loci 9, 16, 2, 3, 3, 8, 11, and 7 (Figure 2).

Statistical estimations with a 95% confidence interval

(CI) through resampling indicated that the Simpson’s

index (0.906) and Shannon-Weiner diversity index (H:

3.466, J: 0.910, Hmax: 3.807, and Hmin: 1.242) identified

the MS77 marker as the most informative for capturing

the genetic diversity of our isolates.
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5. Discussion

Pseudomonas aeruginosa is recognized as an

opportunistic pathogen and a significant contributor to

hospital-acquired infections. Numerous studies have

highlighted the escalating antibiotic resistance in these

strains, posing a global challenge and a fundamental

concern worldwide (14, 15). Additionally, a significant

association between antimicrobial resistance and

biofilm production has been identified. This correlation

is attributed to the extracellular polymeric substances

(EPS) produced in biofilms, which impede the entry of

antibiotics into the bacterial cells (16). Consistent with

our findings, a four-year study in the United States from

2012 to 2015 by Sader et al. revealed that the only

antimicrobial agents with a sensitivity rate exceeding

90% were associated with CAZ (17). The role of biofilms in

antimicrobial resistance is complex, exerting a

substantial influence on resistance dynamics. Bacteria

residing within biofilms exhibit a noteworthy 10 to

1,000-fold increase in AMR compared to their planktonic

counterparts (18).

Our study aligns with these observations,

demonstrating higher antibiotic resistance in strains

that exhibit strong biofilm production. This

phenomenon suggests hindered drug penetration into

bacterial cells, supporting findings similar to those

reported by Pournajaf et al. (12). In contrast, Alkhulaifi

and Mohammed reported a MDR pattern in 72.6% of

their 81 clinical and 14 environmental P. aeruginosa

isolates, which differs from our findings. This disparity

may be attributed to variations in the sources of the

samples (19). Additionally, Plukarz et al. documented

that 28.8% of their isolates were biofilm producers,

contrasting our observed 92.4%. Regional disparities and

variations in sample types could potentially account for

these difference (20).

The MLVA technique showcased a high level of

accuracy in distinguishing differences among isolates.

In a study by Vu-Thien et al. in France, the MLVA method

successfully discriminated 163 P. aeruginosa isolates into

39 patterns (10). Similarly, in 2017, Lalancette et al.

classified 41 isolates into 8 different genotypes using

MLVA (21).

These findings underscore MLVA's ability to reveal

gene mutations and genetic diversity arising from the

transfer of mobile genetic elements, such as plasmids,

pathogenicity islands, and transposons, within the

bacterial genome. This diversity creates distinct genetic

patterns, valuable in epidemiological research. In their

study, Lashgarian et al. classified 70 P. aeruginosa strains

collected from urine samples into 36 sequence types

following electrophoresis and the determination of

VNTR numbers (22). Their research demonstrates the

utility of this technique for typing clinical strains of P.
aeruginosa, highlighting its potential to distinguish

isolates with high phenotypic similarity. Considering

the origin of our samples and building upon their

findings, the observed differences in sequence types in

our study are justified. Similarly, according to Vu-Thien

et al., two microsatellites, ms207 and ms209, exhibit

high diversity indices, indicated by an HGDI value close

to or greater than 0.8. However, the analysis of these

microsatellites requires the use of a sequencer or other

high-resolution equipment (10).

The global index of diversity for the 15 markers with

190 isolates stands at 0.97%. In our study, the Simpson

index (0.906) and Shannon-Wiener diversity index (H:

3.466, J: 0.910, Hmax: 3.807, and Hmin: 1.242) indicated

that MS77 was the most effective genetic diversity

indicator. The stability of VNTRs in MLVA-types from

patients is remarkably consistent over time, with

occasional variations such as the insertion of an IS

element or the addition/deletion of repeats in a single

VNTR, typically a microsatellite. A study by Jarych et al.,

irrespective of geographical distance and sample origin

(different clinical samples vs. CF patients), supports our

findings, suggesting that MLVA is a robust genotyping

method applicable for systematic surveys of P.

aeruginosa isolates in patients. The study demonstrates

the method's effectiveness in discriminating isolates

(23).

5.1. Conclusions

In this study, a notable observation is the escalating

trend in antibiotic resistance, emphasizing the need for

regular monitoring. A direct correlation was identified

between antibiotic resistance and biofilm production.

Imperative measures include restricting the

indiscriminate use of antibiotics and implementing

stringent monitoring systems to ensure rational drug

utilization. The results underscore the efficacy of MLVA

as a rapid and cost-effective typing method, exhibiting

high reproducibility and effectiveness in genotyping

clinical isolates of P. aeruginosa. MLVA notably

demonstrates its potential in distinguishing between

isolates showing high phenotypic similarity.
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