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Abstract

Background:Candida albicans is notably pathogenic due to its ability to form biofilms that are resistant to conventional

antifungal treatments.

Objectives: This study aims to explore the effectiveness of Streptomyces cellulosae extract in disrupting biofilm formation by

targeting specific genes within C. albicans.

Methods: The study began by isolating S. cellulosae from soil and C. albicans from clinical specimens. S. cellulosae was then

cultured and fermented to produce bioactive compounds. The ability of these extracts to inhibit C. albicans biofilm formation

was tested using a crystal violet assay. Additionally, the effects of the S. cellulosae extracts on the expression of biofilm-related

genes in C. albicans were evaluated using quantitative real-time PCR (qRT-PCR). The growth rates of C. albicans were also

measured to determine the impact of the extracts.

Results: The crude extract of S. cellulosae significantly (P < 0.05) inhibited the formation of C. albicans biofilms at

concentrations exceeding 0.5 µg/mL, with the inhibition becoming more pronounced at concentrations above 2.0 µg/mL. The

qRT-PCR results showed significant changes in the expression of biofilm-related genes ALS1, ALS3, and EFG1 at different extract

concentrations (P < 0.05). The extract also significantly affected the expression of the HWPa and BRG1 genes.

Conclusions: The crude extract of Streptomyces cellulosae shows potential as a novel antibiofilm agent against C. albicans. This

finding opens new avenues for research and potential therapeutic applications in combating biofilm-associated infections.
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1. Background

Candida albicans is an opportunistic fungal pathogen

that colonizes various human body parts such as the

oral cavity, throat, gastrointestinal tract, vagina, and
skin in healthy individuals. It is a part of the body's

normal flora. Under certain conditions, these

opportunistic microorganisms can lead to infections (1,

2). Several virulence factors, including adhesin

expression, hydrolytic enzyme production, the ability to
switch from yeast to hyphae, and metabolic adaptability,

enable C. albicans to proliferate and invade host tissues

(3). The most recurrent and severe infections are often

associated with the formation of biofilms on biological

or artificial surfaces.

Biofilm formation by C. albicans significantly

enhances its resistance to conventional antifungal

treatments and the host's immune defenses, making

infections difficult to eradicate (4). Key genes regulating

biofilm formation include BCR1, ALS1, ALS3, HWP1, and

ECE1, which are considered promising therapeutic

targets. Previous research has shown that specific

compounds can inhibit biofilm formation by

suppressing these genes (5). Streptomyces cellulosae, a

species of Actinobacteria known for producing bioactive

compounds with antimicrobial properties, has shown

potential against various pathogens, including fungi

and harmful Gram-positive bacteria (1, 2). Notably,

Mahmood et al. found that S. cellulosae produces

compounds that inhibit biofilm formation by

Pseudomonas aeruginosa (6).
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2. Objectives

Given the rising number of infections and concerns
about resistance, it is crucial to develop new strategies

to combat biofilm-forming organisms like C. albicans.
Therefore, this study aimed to evaluate the effectiveness

of extracts from S. cellulosae in targeting genes

associated with biofilm formation in C. albicans.

3. Methods

3.1. Isolation and Identification of Microorganisms

Pure cultures of S. cellulosae were sourced from the

Charmo Research Center at Charmo University,

Sulaimaniyah, Iraq. The bacterium was cultivated on

Gause's medium after being extracted from soil and

identified using colony morphology and 16S rDNA

genomic sequencing. Sequence analysis confirmed that

the bacteria matched those in the NBRC 13027 strain (6).

Clinical samples for isolating C. albicans were collected

from Hiwa Hematology/Oncology Hospital in

Sulaymaniyah, Iraq. Samples were taken using swabs (7)

from symptomatic leukemic patients' oral lesions, then

inoculated on Sabouraud dextrose agar (SDA) and

incubated at 37°C for 24 hours (8). Isolates were further

cultivated on CHROM agar Candida and incubated at

37°C for 48 - 72 hours (9). Colony morphology, including

color, size, and texture, was examined to identify the

species (10).

3.2. Antibiofilm Formation by Streptomyces cellulosae

Initially, S. cellulosae was cultured using the batch

culture method (11), and 100 µL of bacterial spore stock

(1×108 spores/mL) was added to 100 mL of tryptic soy
broth (TSB) (12). The cultures were maintained in a

shaking incubator (LSI-5004M, Indonesia) at 30°C for 48

hours at 150 rpm. Subsequently, TSB was inoculated with
a 5% v/v inoculum and cultured for 120 hours at 37°C (13).

The bioactive compounds from the broth culture were

then extracted. The culture filtrate was mixed with ethyl

acetate (1:1, v/v) and vigorously shaken for 20 minutes.

Using a rotary evaporator (Heidolph, GmbH, Germany),
the ethyl acetate layer was separated from the liquid

phase and concentrated by evaporation at 40°C until

dry. The resultant residue was dissolved in pure

methanol to produce a reddish-brown crude extract and

stored at -20° C until needed.

3.3. Biofilm Formation by Candida albicans

Biofilm development was evaluated using 96-well

microplates (14). Briefly, C. albicans isolates (McFarland 1

× 108 CFU/mL) were cultured overnight in SDA broth at
37°C (12). After incubation for 24 hours at 37°C in 2.0 mL

of yeast extract peptone dextrose (YPD) broth, tubes
were diluted (1:20) with YPD supplemented with 1%

glucose and incubated for another 24 hours at 37°C (15).

The optical density (OD) was then measured at 630 nm.
Each test was conducted in triplicate. Subsequently, the

OD of each strain (ODs) was compared to that of the
negative control (ODnc). The reference strain of C.

albicans (ATCC 90028) served as the positive control for

biofilm formation, whereas the negative control

comprised solely of broth media without C. albicans.

Strains were categorized based on their biofilm-forming

ability as none (ODs = ODnc), weak (ODnc < ODs <

2ODnc), moderate (2ODnc < ODs < 4ODnc), and strong

(4ODnc < ODs) (15).

3.4. Antibiofilm Activity of Streptomyces cellulosaeagainst
Candida albicans

The antibiofilm efficacy of Streptomyces isolates

against C. albicans was determined using a crystal violet

assay (16, 17). The previously formed C. albicans biofilms

in 96-well microplates were treated with 0.5, 1, 2, 3, and 4

µg/mL of the S. cellulosae antibiofilm extract (100 µL) for

48 hours at 37°C. Subsequently, the medium was

discarded, and the wells were washed with sterile

phosphate-buffered saline (PBS), inverted for blotting,

and air-dried. Each well then received 200 µL of

methanol for fixation and was incubated for 15 minutes

at 25°C. After discarding the methanol, the plates were

air-dried for 45 minutes. Next, 200 µL of a 0.1% w/v

crystal violet solution was added to each well, and the

plate was incubated for 20 minutes at 25°C. Following

two washes with distilled water, 200 µL of an acetone:

Ethanol (20:80 v/v) mixture was added to each well and

incubated for 15 minutes at 25°C to stain the biofilm (18).

Biofilm production was quantified using a plate reader

by transferring 100 µL from each well to a new, sterile

microplate and measuring the OD at 630 nm. Each test

was repeated three times (15).

3.5. Quantitative Real-time PCR Analysis of Candida albicans
Biofilm-Specific Genes

A 96-well polystyrene microtiter plate (Iwaki), flat-

bottomed and pre-sterilized, was used to culture a

standard cell culture of C. albicans (1.0 mL). After

incubating with agitation at 37°C for 1.5 hours, the liquid

was discarded and the wells were rinsed twice with PBS.

Each well was then replenished with 1.0 mL of fresh YPD
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medium containing 3.0 mg/mL of Streptomyces crude

extract and incubated for 24 hours at 37°C. Post-

incubation, the supernatant was removed and the wells

were washed twice with PBS. Total RNA from C. albicans

biofilms was isolated using the SV Total RNA Isolation
System (Biolab), and 2.0 mg of RNA was reverse-

transcribed using Superscript II (Invitrogen). The

resulting cDNAs were PCR-amplified, with sequencing

confirming product specificity. quantitative real-time

PCR (qRT-PCR) primers were designed specifically for the
C. albicans biofilm-associated genes ALS1, ALS3, BRG1, EFG1,

HSP9, HWP1, and ACT1 (Table 1).

The RT-PCR mixture (20 µL) included 10 µL of Luna

Probe One-Step Reaction mix (No ROX) (2 ×), 1.0 µL of

Luna WarmStart RT Enzyme Mix (20 m ×), 0.8 µL of

primers, 0.4 µL of Probe (10 µL), template RNA, and 20 µL

of nuclease-free water. The Roche LightCycler® was

utilized for qRT-PCR, with each run comprising a 10-

minute pre-incubation at 95°C, followed by 40 cycles of

10 seconds of denaturation at 95°C and 30 seconds of

annealing/extension at 60°C. ACT1 served as the

reference housekeeping gene. Each concentration of

crude extract was tested in at least three experimental

repeats.

3.6. Growth Rate Measurements

Candida albicans cells were cultivated overnight in

SDA at 37°C with shaking at 200 rpm. After obtaining

two cell counts, 20 mL of fresh SDA was inoculated with

the cells at a density of 1 × 106 cells/mL.

Spectrophotometric readings were taken hourly, with

the cultures shaken at 200 rpm and maintained at 37°C.

Growth rates were monitored over three days for

various initial cultures.

3.7. Statistical Analysis

Statistical analyses of the qRT-PCR results were

performed using Microsoft Excel and Graph Pad PRISM

8. The average Ct values for the genes ALS1, ALS3, BRG1,

EFG1, HSP9, HWP1, and ACT1 were presented as mean ±

standard deviation (SD) before and after treatment with
the crude extract. A P-value of < 0.05 was considered

statistically significant.

4. Results

4.1. Antibiofilm Activity of Streptomyces cellulosae Crude
Extract

The study demonstrated that the crude extract from

S. cellulosae inhibited biofilm formation by C. albicans at

various concentrations (0.5, 1.0, 2.0, 3.0, and 4.0 µg/mL).

4.2. Gene Regulation of Biofilm Formation in Candida
albicans

The efficacy of S. cellulosae crude extract against C.
albicans showed that concentrations above 0.5 µg/mL

notably impeded biofilm formation by the Candida
isolates. Additionally, dosages greater than 2.0 µg/mL

significantly inhibited Candida biofilm production (P <

0.05).

4.3. Antibiofilm Activity of Streptomyces cellulosae Crude
Extract on the Expression of Biofilm-Related Genes in
Candida albicans

Quantitative real-time PCR analysis revealed the

impact of the crude extract on the expression levels of

biofilm-associated genes in C. albicans at concentrations

ranging from 0.5 to 4.0 µg/mL. Gene expression was

normalized against ACT1, used as the reference gene. The

expression of ALS1 and ALS3 genes decreased

significantly at concentrations of 0.5 and 4.0 µg/mL, and

at 2.0 and 4.0 µg/mL respectively, compared to the

control group (CG) which received no treatment (P <

0.02). Additionally, the expression levels of ALS1 and ALS3

increased significantly at a concentration of 3.0 µg/mL

compared to CG (P < 0.03) (Figure 1).

Furthermore, the expression of EFG1 was markedly

higher after treatment with the crude extract at 0.5 and

3.0 µg/mL compared to CG (P < 0.05) and decreased

progressively at concentrations of 1.0, 2.0, and 4.0

µg/mL. Conversely, the HSP9 gene maintained normal

expression levels following treatment with the crude

extract (Figure 2). The expression of both HWPa and BRG1

genes was notably affected at concentrations of 0.5 and

3.0 µg/mL. Notably, a significant reduction in the

expression of HWPa and BRG1 genes was observed at

concentrations of 2.0 and 4.0 µg/mL when the C. albicans
isolate was treated with the crude extract (Figure 3).

5. Discussion

Candida is the fourth most common cause of

hospital-acquired infections (26) and a leading

contributor to biofilm formation associated with

medical interventions, drug use, and implants (27).

Consequently, this study focused on the local impact of

these biofilms. Our findings showed that concentrations

of the crude extract above 0.5 µg/mL significantly

inhibited Candida biofilm formation, with even more

pronounced effects observed at concentrations

exceeding 2.0 µg/mL. Furthermore, the study revealed

that the expression levels of the ALS1 and ALS3 genes
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Table 1. Primers Used in RT-PCR to Detect the Biofilm Formation-Related Genes in Candida albicans

Genes Sequence Reference

ALS1
F: GACTAGTGAACCAACAAATACCAGA

(19)
R: CCAGAAGAAACAGCAGGTGA

ALS3
F: CCAAGTGTTCCAACAACTGAA

(20)
R: GAACCGGTTGTTGCTATGGT

EFG1
F: TATGCCCCAGCAAACAACTG

(21)
R: TTGTTGTCCTGCTGTCTGTC

hsp90
F: GCTTTAAGTGCTGGTGCTGACGTT

(22)
R: TGGTACCACGACCCAATCTTTCGT

HWP1
F: GACCGTCTACCTGTGGGACAGT

(23)
R: GCTCAACTTATTGCTATCGCTTATTACA

BGR1
F: ACGATCAACCATTAGTGGAGG

(24)
R: GAAGAAGTAGGTGTAGATGATCCAC

ACT1
F: TTTCATCTTCTGTATCAGAGGAACTTATTT

(25)
R: ATGGGATGAATCATCAAACAAGAG

Figure 1. Quantitative real-time PCR (qRT-PCR) analysis of expression of biofilm-specific genes (ALS1 and HSP9)

Figure 2. Quantitative real-time PCR (qRT-PCR) analysis of expression of biofilm-specific genes (ALS3 and EFG1)

varied under different concentrations of the crude

Streptomyces extract, generally decreasing at most

concentrations but increasing at 3.0 µg/mL. Research by

Deng et al. highlighted the influence of ALS3 gene

expression on the biofilm formation capabilities of C.

albicans, suggesting that manipulating this gene's

expression could aid in developing both therapeutic

and preventive strategies (28), a finding that
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Figure 3. Quantitative real-time PCR (qRT-PCR) analysis of expression of biofilm-specific gene (BRG1 and HWPa)

corroborates our results. Additionally, Martorano-

Fernandes et al. demonstrated that gene expression

levels, including those of the ALS1, ALS3, and HWPa genes,

could vary based on the environmental conditions and

substances present, noting that increased gene

expression could exacerbate pathogenic conditions (29).

Zarimeidani et al. explored the minimum inhibitory

concentrations (MIC) of caprylic acid/nanoencapsulated

caprylic acid against C. albicans, ranging from 625 - 400

to 1.3-50 µL/mL. Their study utilized qRT-PCR to measure

the expression level of the EFG1 gene, finding the highest

activity of caprylic acid at 450 and 500 µg/mL, with the

most potent activity for nanoencapsulated versions at

6.2 and 3.1 µg/mL (30). Another innovative approach

involves combining inhibitors of Histone Deacetylase

(HDAC) and Heat Shock Protein 90 (HSP90) to enhance

the efficacy of fluconazole against resistant strains of C.
albicans. This pharmacological strategy was shown to

reduce gene expression related to drug resistance and

mitigate major pathogenic factors, presenting a

contrast to our findings where gene expression varied

based on treatment concentration and gene targeted

(31). These differences could stem from variations in

experimental methods and the specific genes analyzed.

Antimicrobial peptides (AMPs) have emerged as a

promising approach to treat Candida infections. Samot
and Rouabhia investigated the antimicrobial effects of

Dermaseptin S4 (DS4) against C. albicans, focusing on its

impact on the growth, morphological alterations,

biofilm formation, and gene expression of the fungus.

DS4 halted the growth of C. albicans at concentrations of
32 and < 16 µg/mL. It appears to obstruct the yeast-to-

hyphae transition and limit biofilm development by

reducing biofilm mass weight. Significantly,

Dermaseptin also reduced the expression of the HWP1

and EAP1 genes (32). The polymorphic nature of C.
albicans, which can grow in both yeast-like and

filamentous forms, makes the transition between these

states crucial for its pathogenicity. EFG1 and BRG1 are

important transcriptional regulators that influence the

growth and morphological transformations of this

fungus, impacting its pathogenicity and biofilm

formation (33-35). Biofilms are microbial communities

that form structures by attaching to surfaces, and can

include combinations of bacterial or fungal species (36).

The inhibitory effect of S. cellulosae on biofilm synthesis

was also observed in Iraq by Mahmood et al., supporting

the current investigation that demonstrates S.

cellulosae's ability to produce metabolites with

antibacterial and antibiofilm properties (6)

5.1. Conclusions

It is concluded that the crude extract of S. cellulose

has potential as a novel antibiofilm agent against C.

albicans by suppressing the expression of some involved

genes, offering a promising avenue for future research

and potential therapeutic applications.
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