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Abstract

Background: The COVID-19 pandemic underscores the need for effective models to study SARS-CoV-2 infection and evaluate antiviral therapies.

Objectives: This study aimed to develop a human nasal organoid model to assess susceptibility to SARS-CoV-2 and its variants and to evaluate the antiviral

effects of compounds such as camostat, remdesivir, and bergamottin.

Methods: Nasal organoids were infected with SARS-CoV-2 and HCoV-OC43 pseudoviruses, followed by wild-type and variant strains in a BSL-3 laboratory. Viral

content was measured at 2, 24, and 48 hours post-infection using qPCR, and infected cells were identified via immunofluorescence.

Results: The organoids demonstrated susceptibility to SARS-CoV-2 and HCoV-OC43 pseudoviruses (P < 0.001) and were effectively infected with SARS-CoV-2

variants. Remdesivir, hesperidin, and bergamottin exhibited dose-dependent antiviral effects (P < 0.0001).

Conclusions: Human nasal organoids represent a valuable model for studying SARS-CoV-2 infection and evaluating antiviral drugs, particularly for nasal

applications in vitro.
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1. Background

The SARS-CoV-2 outbreak has emphasized the need

for effective treatment and control strategies.

Traditional research models face limitations, such as the

lack of physiological relevance in 2D cultured cell lines

(1, 2) and discrepancies in animal models (3).

Understanding the infection mechanisms of SARS-CoV-2,

particularly in the nasal cavity—the primary target for

respiratory viruses—is crucial (4). However, limited

information is available regarding its infection routes

and replication in the nasal mucosal epithelium,

necessitating a model that accurately reflects human

nasal cavity infection to advance early detection and

antiviral evaluations (5).

Organoids, three-dimensional cultures derived from

stem cells, mimic the structures and functions of

human organs (6-8). They are valuable tools for studying

tissue biology, disease modeling, and drug discovery (9-

11). While research on respiratory organoids in the

context of SARS-CoV-2 infection exists (12-15), studies on

nasal mucosal organoids (NMOs) are scarce. This

research focuses on NMOs, cultivated from human nasal

mucosal basal cells, which include ciliated and secretory

cells (16). Nasal mucosal organoids exhibit

characteristics of typical nasal epithelium and express

ACE2 and TMPRSS2, both essential for SARS-CoV-2

infection.

2. Objectives

This study aims to develop an in vitro viral infection

model using NMOs to accurately simulate human nasal

mucosa. This model, combined with pseudo-viral tools,

offers a more precise representation of the infection

process than traditional models. By evaluating the

efficacy of antiviral drugs, we aim to support the

development of effective nasal treatments for SARS-CoV-

2, contributing to epidemic prevention and clinical care.
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3. Methods

3.1. Tissue Samples

Human NMOs were generated from tissues obtained

from Nanfang Hospital, in compliance with ethical

guidelines.

3.2. Viruses

The study utilized several SARS-CoV-2 virus and

pseudovirus strains (Appendix 1), with all experiments

conducted in a biosafety level 3 (BSL-3) laboratory.

3.3. Nasal Mucosal Organoid Culture

Nasal tissues were processed according to the

method described for nasal mucosal tissue preparation

(6), digested with enzymes (collagenase IV and dispase),

and cultured in Matrigel within trans-well plates

(Corning, USA). The culture medium (Accuroid, China)

was replaced every 2 - 3 days.

3.4. SARS-CoV-2 Infection

Nasal mucosal organoids were seeded at a density of

2.0 × 104 cells per well in 100 μL and incubated at 37°C

for 3 days. After the addition of the virus inoculum for 2

hours, the inoculum was replaced with culture medium

for an additional 24 hours. Infection was assessed using

fluorescence microscopy and a luciferase assay.

3.5. qRT-PCR

Total RNA was extracted from the organoids using

TRIzol. The RNA was then converted to cDNA, and qRT-

PCR was performed using custom primers (Appendix 2).

3.6. Flow Cytometry

Flow cytometry of NMOs was performed using an

Attune CytPix flow cytometer (ThermoFisher, USA) with

various cell marker antibodies detailed in Appendix 3.

3.7. Immunofluorescence

Post-infection, organoid samples were fixed,

embedded, and processed for immunofluorescence

analysis using primary and secondary antibodies to

identify viral proteins.

3.8. Drug Treatment

Organoids were treated with camostat, remdesivir,

and bergamottin (Appendix 4) for 1 hour prior to viral

infection. Viral RNA was then measured by qPCR at 24

hours post-infection. To evaluate the impact of

bergamottin, a CellTiter-Glo (Promega, USA) cell viability

assay was conducted.

3.9. Statistics

Data were analyzed using three or more replicates,

presented as mean ± standard deviation, and statistical

significance was assessed using t-tests with a threshold

of P < 0.05.

4. Results

4.1. Long-Term Culture and Validation of Nasal Mucosal
Organoids

After seeding in Matrigel, NMOs grew from 20 μm to

200 μm within 3 days, forming solid or hollow

structures (Figure 1A). Enzymatic and mechanical

dissociation were utilized for passaging every 7 days,

allowing at least 6 months of efficient expansion.

Histological analysis using H&E staining (Figure 1A)

confirmed that the NMOs closely resembled native

tissue. Immunofluorescence staining identified key cell

types (17), including epithelial cells (Cytokeratin 7) and

ciliated cells (β-tubulin) (Figure 1B).

Flow cytometry revealed a higher percentage of CK7-

positive epithelial cells and a lower percentage of CD45-

positive lymphocytes (Figure 1C-J), along with an

increase in β-tubulin-positive ciliated cells, which are

essential for nasal mucosal function (18). Additionally,

the NMOs supported immune cells, providing a

foundation for further studies on the immune

microenvironment.

4.2. Nasal Mucosal Organoids Susceptible to SARS-CoV-2
Pseudovirus and HCoV-OC43 Pseudovirus

SARS-CoV-2 and HCoV-OC43 pseudoviruses were

added to a 96-well plate (30 μL per well) and incubated

at 37°C for 2 hours. The supernatant was then replaced

with 100 μL of organoid culture medium and incubated

for an additional 24 hours. After discarding the

medium, the organoids were collected for intracellular

viral RNA detection. Viral mRNA expression was

significantly higher in the HCoV-OC43 group (P < 0.001)

(Figure 2A) and even more elevated in the SARS-CoV-2

group (P < 0.0001) (Figure 2B), confirming the
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Figure 1. Growth dynamics of nasal mucosal organoids (NMOs). A, bright field image of NMO at day 1, 3, 5, 7 of passage 0; passage 3, 8, 15, and 25; and the H&E staining (Scale bar =

100 μm); B, immunofluorescence staining of Cytokeratin 7 (CK7), p63, Muc5AC, and β-tubulin. The flow-cytometry results of β-tubulin; C, Muc5AC; D, CK5; E, CD68; F, CD45; G, C5a-
R; H, CD3 + CD8 +; I, CD3 + CD4 +; J, of NMO and original tissue.

successful establishment of infection models for both

viruses in human nasal mucosal epithelial organoids.

4.3. Assessing Susceptibility of Nasal Mucosal Organoids to
SARS-CoV-2 Live Virus

The virus was introduced to NMOs at multiplicities of

infection (MOIs) of 1 and 10, followed by a 24-hour

incubation. Detection of viral RNA revealed that the MOI

= 10 group exhibited higher SARS-CoV-2 copy numbers

compared to the MOI = 1 group (Figure 2C), suggesting a

correlation between viral exposure and nasal cell

susceptibility. Testing various SARS-CoV-2 strains

demonstrated similar susceptibility and replication in

NMOs (Figure 2D), with viral nucleocapsid primarily

expressed in goblet cells, indicating potential sites for

viral persistence (Figure 2E).

4.4. Antiviral Drugs Inhibit SARS-CoV-2 Infection in Nasal
Mucosal Organoids

The antiviral drug testing capability of the NMO

model was evaluated using three antiviral agents:

Camostat, remdesivir, and bergamottin. Camostat and

remdesivir have established antiviral efficacy, blocking

TMPRSS2 and inhibiting RNA-dependent RNA

polymerase, respectively (19, 20). Therefore, drug

treatments were administered prior to viral

introduction to evaluate their preventive efficacy.

Since the adverse effects of bergamottin are unclear,

a safety test was conducted first. An ATP assay indicated
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Figure 2. Modeling of SARS-CoV-2 infection in nasal mucosal organoids (NMOs). Pseudovirus virus HCoV-OC43 (A); and SARS-CoV2 (B); infection of nasal mucosal organoid; virus
content in the supernatant at different times of infection for MOI = 1 and MOI = 10 (C); detection of viral content in the supernatant under different types of virus of infection (D);

immunofluorescence detection of goblet cells infected by SARS-CoV-2. nuclei (DAPI), goblet cells (Muc5AC), viral nucleoprotein (NP), and Merge (Scale bar = 100 μm) (E). *** P <
0.001; **** P < 0.0001.

no significant difference in NMO survival at

bergamottin concentrations below 125 μM compared to

the DMSO control, consistent with morphological

assessments (Figure 3A). H&E staining confirmed the

absence of pathological changes or apoptosis at these

concentrations (Figure 3B, C).

Following the infection of NMOs with SARS-CoV-2

Omicron BA.5 at MOI = 1 for 2 hours, camostat (3 μM)

demonstrated dose-dependent inhibition (Figure 4A),

while remdesivir reduced viral RNA levels by

approximately 40% at 0.041 μM (Figure 4B). Bergamottin

showed comparable inhibitory effects, particularly at 50

μM (Figure 4C).

5. Discussion

Traditional virus research models, such as 2D-

cultured immortalized nasal mucosal epithelial cell

lines, are limited by their lack of tissue structure and

physiological function, as they are derived from

monoclonal cell lines. Consequently, they fail to

accurately replicate infection processes and

pathophysiological changes within the organ. These cell

lines also exhibit a uniform genetic background,

making them unsuitable for capturing inter-individual

variations, thereby restricting their utility in population

studies and high-throughput analyses (2, 21-24). In

contrast, coronavirus animal models, including rhesus

macaques, transgenic mice, and ferrets, present

significant physiological disparities compared to

humans and are associated with high costs and

biosafety risks (3, 25). The nasal cavity, as the primary

barrier and initial target organ for respiratory viruses,

plays a critical role in viral invasion, replication, and

transmission. The nasal mucosa serves as a reservoir for

viral replication and a trigger point for immune

responses in COVID-19 infection (5). This makes NMOs an
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Figure 3. Cell validation evaluation of bergamottin against nasal mucosal organoids (NMOs). A, morphological observation of NMOs treated with 125μM bergamottin scale bar =

1000 μm; B, H&E staining of NMOs under the influence of bergamottin; C, cell viability of NMOs under the influence of different concentrations of bergamottin at 24, 48, and 72
hours. * P < 0.05.

ideal model for investigating the mechanisms of COVID-

19.

Pseudoviruses, engineered to mimic wild-type

viruses, are non-replicating and undergo only a single

round of infection, enhancing biosafety while allowing

for detection and analysis via reporter genes (26). Both

HCoV-OC43 and SARS-CoV-2, classified as β-

coronaviruses, can cause a range of diseases in humans

and animals (27, 28). Initial experiments using NMOs

infected with HCoV-OC43 and SARS-CoV-2 pseudoviruses

confirmed the susceptibility of NMOs to coronaviruses.

The nasal mucosa, composed of ciliated and goblet cells,

exhibits high expression of ACE2 and TMPRSS2, making

it the primary site of SARS-CoV-2 infection (29). The virus

spreads through goblet cell secretions and ciliary

movement (30). Our experiments demonstrated a

positive correlation between higher viral exposure

doses and increased infection rates and replication.

Immunofluorescence analysis revealed that goblet cells

are particularly susceptible to SARS-CoV-2, consistent

with previous findings (30).

Post-infection, we observed a continuous increase in

viral gene copy numbers in NMOs, indicating effective

infection and replication. This confirms that NMOs can

replicate the complete lifecycle of the virus. The nasal

mucosa's large surface area and rich blood supply

facilitate efficient drug delivery while minimizing

systemic side effects (31-34). Following the COVID-19

outbreak, various nasal-administered antiviral drugs

have been developed, yet the lack of robust preclinical

models remains a significant bottleneck. The

establishment of our human nasal mucosa model for

SARS-CoV-2 provides a cost-effective, high-throughput

platform for drug evaluation. The primary limitations of

this study include a small sample size and the absence

of analysis on the variability of viral infection across
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Figure 4. Detection of the inhibitory effect of drugs on SARS-CoV-2 in human nasal mucosal organoids (NMOs). A, camostat at a concentration of 3 μM shows a dose-dependent

inhibition of SARS-CoV-2 infection of human NMOs; B, remdesivir at a concentration of 3.33 μM shows a dose-dependent inhibition of SARS-CoV-2 infection of human NMOs; C,

bergamottin at a concentration of 50 μM shows a dose-dependent inhibition of SARS-CoV-2 infection of human NMOs.

different populations. Additionally, the antiviral

mechanism of bergamottin was not addressed in this

study and warrants further investigation.

5.1. Conclusions

Our research demonstrates that camostat,

remdesivir, and bergamottin exhibit dose-dependent

antiviral properties against SARS-CoV-2 in NMOs,

confirming the model’s efficacy as a drug evaluation

platform. In conclusion, we have developed a stable in

vitro model of SARS-CoV-2 infection using NMOs, which
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can be utilized for studying infection mechanisms and

screening antiviral drugs, offering valuable insights into

nasal drug administration for COVID-19 prevention and

treatment.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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