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Abstract

Background: The role of microRNAs (miRNAs) in viral diseases is well established. Due to the COVID-19 pandemic, this study

analyzed the expression levels of miR200b-3p, miR34b-5p, miR203a-3p, and Let7g-5p in the blood samples of COVID-19 patients,

along with the expression level of interleukin-6 (IL-6) as a biomarker.

Objectives: The purpose of this study is to investigate the correlation between the expression levels of IL-6 and the mentioned

miRNAs.

Methods: The study included 60 COVID-19 patients confirmed by an infectious disease specialist and positive real-time PCR

tests, hospitalized at Razi Hospital, Ahvaz. The control group consisted of thirty healthy people. COVID-19 disease was verified

using oro-nasopharyngeal swab samples, and PBMC samples from patients were used to check the expression level of IL-6.

Plasma samples were analyzed for the expression levels of miR200b-3p, miR34b-5p, miR203a-3p, and Let7g-5p.

Results: All examined expression factors were markedly elevated in COVID-19 patients in comparison to the control group.

Specifically, miR200b-3p (P < 0.00), Let7g-5p (P < 0.003), and miR203a-3p (P < 0.00) exhibited significantly higher levels in the

infected group. MiR34b-5p (P < 0.02) also showed an increase, albeit to a lesser extent. Additionally, IL-6 expression was

substantially higher in hospitalized patients. Positive correlations, though not statistically significant, were observed between

miR200b-5p, miR203a-3p, miR34b-5p, and IL-6 expression. Conversely, a non-significant negative correlation was noted between

Let7g and IL-6 in COVID-19 patients.

Conclusions: This study establishes a relationship between the elevated expression of specific miRNAs (miR200b-3p, miR34b-

5p, miR203a-3p, and Let7g-5p) and IL-6 in COVID-19 patients. The significant upregulation of these miRNAs, alongside increased

IL-6 levels, underscores their potential role as biomarkers for COVID-19. These findings suggest that miRNA and IL-6 expression

profiles could be instrumental in the diagnosis and management of COVID-19, providing new avenues for therapeutic

interventions and improving patient outcomes.
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1. Background

In late December 2019, a new virus from the
Coronavirus family was detected in Wuhan, China,

which quickly spread globally (1, 2). On March 11, 2020,

the World Health Organization (WHO) declared the

outbreak of COVID-19 a pandemic (3). The virus was

named "SARS-CoV-2" by the International Committee on

Taxonomy of Viruses (ICTV) (4). SARS-CoV-2 shares 80%

phylogenetic similarity with SARS-CoV and 50% with
MERS-CoV, all belonging to the beta coronaviruses genus

(5, 6). Understanding the molecular mechanisms

underlying the immune response to SARS-CoV-2 is

crucial for developing effective treatments and
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diagnostic tools. Fourteen open reading frames (ORFs)

code for both structural and non-structural proteins,

such as nucleocapsid (N), membrane (M), envelope (E),
and spike (S) proteins (7). By attaching to the ACE2

receptor on host cells, the S protein, which is made up of
the S1 and S2 subunits, promotes viral entry (8-10).

Small non-coding RNAs known as microRNAs

(miRNAs) are involved in the regulation of gene

expression post-transcriptionally, playing crucial roles

in cellular functions, disease mechanisms, immune

response, and viral infections. The miRNAs have been

identified as potential diagnostic tools and therapeutic

targets in various diseases, including viral infections (11).

The miRNAs are isolated from blood (serum and

plasma), saliva, urine, feces, and other body fluids (12).

Several new methods have been developed with a

special focus on sensitivity and specificity for the

recognition of miRNAs in human body fluids (13).

Current methods used for detection include

quantitative PCR (qPCR), in situ hybridization,

microarrays, and RNA sequencing (14).

Recent studies have highlighted the importance of

miRNAs in the pathogenesis of viral infections,

including their roles in modulating host immune

responses and viral replication. However, the specific

roles of miRNAs in the context of COVID-19 remain
poorly understood. Among the miRNAs, miR200b-3p,

miR34b-5p, miR203a-3p, and Let7g-5p have been

implicated in inflammatory processes and immune

regulation, suggesting their potential involvement in

COVID-19 pathophysiology (15, 16).

MiR200b-3p is a miRNA that can regulate gene
expression and influence the expression of ACE2 in

COVID-19 patients (17). It can also modulate the level of

interleukin-6 (IL-6) and other cytokines (18). MiR203a-3p

can influence the expression of genes involved in

inflammation, potentially affecting the severity of
COVID-19 disease (19). MiR34b-5p can interact with key

proteins and immune response pathways (20), and

Let7g-5p is known to inhibit M protein expression of

SARS-CoV-2 and suppress the immune response (21).

The IL-6 is a pro-inflammatory cytokine identified as

a key marker of severe COVID-19. Elevated levels of IL-6

are associated with increased disease severity and poor

clinical outcomes in COVID-19 patients. Understanding

the relationship between miRNA expression and IL-6

levels could provide insights into the molecular

mechanisms driving inflammation and disease

progression in COVID-19 (22, 23). Despite the growing

body of literature on miRNAs and IL-6 in viral infections,

there is a lack of comprehensive studies examining their

roles and interactions in COVID-19 patients. This study

aims to investigate the expression levels of miR200b-3p,

miR34b-5p, miR203a-3p, and Let7g-5p in COVID-19
patients and their correlation with IL-6 expression

levels.

2. Objectives

We hypothesize that these miRNAs are up-regulated
in COVID-19 patients and correlated with IL-6 levels,

contributing to the inflammatory response observed in
severe cases.

3. Methods

3.1. Characteristics of the Subjects

Sixty hospitalized COVID-19 patients (26 females, 34

males) confirmed by specialists and real-time PCR, along

with 30 healthy individuals, were included in this study.

Patients were admitted to the infectious disease ward of

Razi Hospital (Ahwaz, Iran) between May and July 2021.

The O2 saturation of all patients was ≤ 93%, categorizing

them as severe, and they received remdesivir (first day

200 mg/IV, second to fifth days 100 mg/IV) based on the

national therapeutic protocol. Thirty healthy

individuals with no signs of disease and a negative real-

time PCR test were included as the control group.

Sample collection was carried out on the first day of

admission, and written informed consent was obtained

from all participants. Demographic information was

collected via a questionnaire.

Exclusion criteria for patients included a history of

asthma, allergies, autoimmune, or inflammatory

diseases. Healthy controls were screened to exclude any

history of COVID-19 symptoms or recent exposure to

infection, confirmed history of SARS-CoV-2 infection by

PCR test, other respiratory infections, and chronic

illnesses that could impact miRNA expression.

Additionally, they were not taking immunosuppressants

or anti-inflammatory medications, and none were

pregnant.

3.2. Patient Management

Blood samples and nasopharyngeal swabs were

collected on the first day of the visit. Dacron-flocked

swabs (Good Care, China) were used for collecting

nasopharyngeal samples following standard protocols.

Samples were immediately placed in a viral transport

medium and transferred to the virology laboratory

under cold chain conditions. For separating PBMCs,

Ficoll-Paque density gradient centrifugation was carried
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out. Plasmas and PBMCs were stored at -70°C for further

analysis.

3.3. Gene Expression

Total RNA was extracted from plasma samples using

the SinaPure™ Viral Kit (SinaClon, Iran) according to the

manufacturer's instructions. The concentration and

purity of RNA were assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, USA).

cDNA was synthesized from 1 µg of total RNA using the

MystiCq miRNA cDNA synthesis kit (Sigma-Aldrich, USA)

following the manufacturer's protocol. Real-time PCR

was used to evaluate miR200b-3p, miR34b-5p, miR203a-
3p, and Let7g-5p expression, with U6 as an internal

control. Primers were obtained from Bonyakhteh

Company (Iran).

3.4. Real-time PCR for MicroRNA Expression

The expression levels of miR200b-3p, miR34b-5p,

miR203a-3p, and Let7g-5p were quantified using the

SYBR Green method (Ampliqon, Denmark). U6 small

nuclear RNA was used as an internal control. Real-time

PCR was performed on an ABI StepOne real-time PCR
System (Applied Biosystems, USA) with the following

cycling conditions: 95°C for 15 minutes, followed by 40

cycles of 95°C for 20 seconds, 55°C for 20 seconds, and

72°C for 2 seconds. The relative expression levels were

calculated using the 2-ΔΔCt method.

3.5. Interleukin-6 Gene Expression and Plasma
Concentration

PBMC samples were extracted using the Super RNA

Extraction Kit (Ana Cell, Iran). The cDNA synthesis was

done using a Sinacolon cDNA synthesis kit (Iran), and IL-

6 expression was quantified by real-time PCR using SYBR

Green master mix (Ampliqon, Denmark) with GAPDH as

an internal control. The following primers were used:

A. IL-6 forward: 5'-ACAATACCCCCAGGAGAAG-3'.

B. IL-6 reverse: 5'-GTCGAGGATGTACCGAATTT-3'.

C. GAPDH forward: 5'-TGTGGGCATCAATGGATTTGG-3'.

D. GAPDH reverse: 5'-ACACCATGTATTCCGGGTCAAT-3'.

The thermal cycling profile was 95°C for 15 minutes,
followed by 40 cycles of 95°C for 20 seconds, 55°C for 20

seconds, and 72°C for 20 seconds. IL-6 plasma

concentrations were analyzed using kits from Karmania
Pars Gene Company, Iran, according to the

manufacturer's protocol.

3.6. Data Analysis

Statistical analyses were performed using SPSS

software version 22.0 (IBM Corp., USA). The Mann-

Whitney U test was used to compare the expression

levels of IL-6 and miRNA between COVID-19 patients and

controls. Correlations between miRNA and IL-6
expression levels were evaluated using Spearman's

correlation coefficient. Statistical significance was

defined as a P-value of less than 0.05.

4. Results

The study analyzed the expression levels of four

miRNAs and IL-6 in COVID-19 patients compared to

controls. The mean ages were 52.69 ± 14.1 years for the

patients and 44.75 ± 13.09 years for the controls.

Demographic data and comorbidities of COVID-19

patients are mentioned in Table 1.

4.1. MicroRNA Expression Levels

The expression levels of miR200b-3p (26.32-fold

change), miR34b-5p (5.51-fold change), miR203a-3p

(33.84-fold change), and Let7g-5p (11.93-fold change) were

found to be significantly higher in COVID-19 patients

than in the control group (Figure 1).

4.2. Interleukin-6 Expression Levels

Comparing COVID-19 patients to the control group,

there was a significant increase in IL-6 expression (4.7-

fold change, P < 0.001). The serum level of IL-6 in COVID-

19 patients was 17.34 ± 0.32 pg/mL, which was

significantly higher compared to the healthy control

group at 1.5 ± 0.23 pg/mL (P < 0.001) (Figure 2).

4.3. Correlation of MicroRNAS with Interleukin-6 Expression

Positive correlations, though not significant, were

found between the expression of miR200b-3p, miR34b-

5p, miR203a-3p, and IL-6. Conversely, a negative, non-

significant correlation was observed with Let7g-5p

(Figure 3).

5. Discussion

In comparison to the control group, our study

demonstrated significantly elevated levels of miR200b-

3p, miR34b-5p, miR203a-3p, Let7g-5p, and IL-6 in the

blood of COVID-19 patients. These findings align with

those observed in viral infections and underscore their

potential roles in the pathophysiology of COVID-19.

Notably, COVID-19 patients have higher expression levels

of miR200b-3p (24). Previous studies have shown that

miR200b-3p is involved in the regulation of

inflammatory pathways, suggesting its role in the
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Table 1. Demographic Data a

Variables Patients (N = 60) Controls (N = 30)

Demographic

Age (y) 52.69 ± 14.1 44.75 ± 13.09

Sex (male) 34 (56.66) 15 (50)

Comorbidities

Hypertention 8.3 -

Diabetes mellitus 6.6 -

Hyperlipidemia 3.3 -

Chronic pulmonary disease - -

Chronic ischemic heart disease - -

Arthritis rheumatoid - -

Hypotyroidism - -

Mortality rate - -

a Values are expressed as mean ± SD or No. (%).

Figure 1. A, comparison of miR200b-3p expression levels in patients vs. control group (P < 0.001); B, comparison of miR34b-5p expression levels in patients vs. control group (P <
0.02); C, comparison of Let7g-5p expression levels in patients vs. control group (P < 0.003); D, comparison of miR203a-3p expression levels in patients vs. control group (P <
0.001). *, P < 0.02; **, P < 0.003; ***, P = 0.00.

heightened inflammatory response seen in COVID-19

(25). However, some studies demonstrated that this
miRNA's ability to influence cytokine production

through mechanisms like the modulation of NF-κB

signaling pathways could explain its association with
disease manifestations (26).

https://brieflands.com/articles/jjm-161962


Neisi N et al. Brieflands

Jundishapur J Microbiol. 2025; 18(9): e161962 5

Figure 2. Comparison of interleukin-6 (IL-6) levels in patients versus control group (P < 0.001); ***, P = 0.00.

Similarly, the elevated levels of miR-34b-5p and miR-

203a-3p observed in our study align with their known

roles in immune response regulation. Notably, miR-34b-

5p is predominantly expressed in lung tissue. Its levels

have been shown to increase during acute lung injury

(ALI), coinciding with a significant reduction in

progranulin (PGRN) expression. This upregulation of

miR-34b-5p may contribute to the pathogenesis of ALI by

downregulating PGRN. In the context of COVID-19, miR-

34b-5p might exacerbate inflammation and tissue

damage by contributing to a dysregulated immune

response (27).

MiR203a-3p overexpression, on the other hand, has
been shown to strongly promote H1N1 infection by

targeting the host’s IFN signaling pathways and also

targeting the viral genome (28). Another in silico study
predicted that miR203a-3p targets differentially

expressed genes (DEGs) and is involved in SARS-CoV-2

processes (29). Srivastava et al. predicted miR-203a-3p

upregulation in severe COVID-19, which is consistent

with our study (30).

The upregulation of Let7g-5p in COVID-19 patients

adds another layer of complexity (21). The altered

expression of Let7g-5p could influence the immune

response to SARS-CoV-2, contributing to the observed

cytokine storm and severe clinical outcomes (31).

Our study also highlights a non-significant positive

correlation between the expression levels of these

miRNAs and IL-6. The IL-6 is a well-established marker of

severe COVID-19, associated with increased disease

severity and poor clinical outcomes (32). The observed

correlation suggests that these miRNAs might regulate

IL-6 production, thereby influencing the inflammatory

milieu in COVID-19 patients. This relationship provides

valuable insights into the molecular mechanisms
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Figure 3. A, miR-200b-3p and interleukin-6 (IL-6) expression correlation analysis in COVID-19 patients (Spearman's correlation = 0.08, P < 0.63); B, correlation analysis between
miR-34b-5p and IL-6 expression in COVID-19 patients (Spearman's correlation = 0.139, P < 0.43); C, correlation analysis of Let7g-5p and IL-6 expression in COVID-19 patients
(Spearman's correlation = -0.135, P < 0.41); D, correlation analysis of miR-203a-3p and IL-6 expression in COVID-19 patients (Spearman's correlation = 0.06, P < 0.71).

driving the inflammatory response in COVID-19 and

suggests that these miRNAs may serve as biomarkers for

disease severity (33).

Let-7g binds to the target mRNA's 3' untranslated

region (UTR) to either block translation or cause mRNA

degradation, performing its regulatory role (34). Our

study aligns with previous research demonstrating that

let-7g targets IL-6 mRNA, reducing its stability and

translation, thereby downregulating IL-6 expression

(34). The ability of let-7g to modulate IL-6 expression is

particularly relevant in the context of COVID-19, where

dysregulated cytokine production is a hallmark of

severe disease. By negatively regulating IL-6, let-7g may

help to prevent the excessive inflammatory response

associated with severe COVID-19 (35).

In comparison with existing literature, our findings

are consistent with studies that have identified miRNAs

as critical regulators of the immune response in viral

infections (36). For instance, recent research has shown

that miRNAs can directly or indirectly modulate

cytokine production, supporting our observations of

the positive correlations between miRNA expression

and IL-6 levels (37, 38). These findings contribute to the

growing body of evidence that miRNAs play pivotal

roles in the pathogenesis of COVID-19 and offer potential

targets for therapeutic intervention (39, 40).

The implications of our study for future research and

clinical practice are significant. The identification of

specific miRNAs that correlate with IL-6 levels in COVID-

19 patients suggests their potential use as biomarkers

for early diagnosis and risk stratification (41, 42). To

confirm these results and investigate their potential

clinical utility, more studies with larger sample sizes are

required. Additionally, therapeutic interventions

targeting these miRNAs could be developed to modulate

the inflammatory response, potentially improving

clinical outcomes in COVID-19 patients (25, 43-46).
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Although significant correlations have been found

between increased expression of specific miRNAs (miR-

200b-3p, miR-34b-5p, miR-203a-3p, Let-7g-5p) and IL-6

levels in COVID-19 patients, several limitations should be

acknowledged. First, the small sample size may limit the

statistical power and hinder the applicability of findings

across various patient demographics and disease

severities. Second, even though the existing literature

and our results indicate the potential for these miRNAs

to impact inflammatory mediators via pathways such as

NF-κB signaling, IFN responses, and the stabilization of

IL-6 mRNA, our investigation did not experimentally

confirm these mechanistic links. The lack of functional

assays (such as luciferase reporter assays or the use of

miRNA mimics or inhibitors in cell models) restricts our

ability to establish causal relationships regarding the

regulatory functions of the identified miRNAs.

Moreover, the study's cross-sectional approach

doesn't allow for tracking how miRNA levels change

over time as the disease progresses or in response to

treatment. To address this, future research should focus

on larger sample sizes, longer-term studies, and

experiments that explore the biological mechanisms

behind these miRNAs, including their direct targets and

the signaling pathways they affect. Also, using methods

that combine different types of biological data, like gene

expression and protein levels, might offer a clearer

picture of how miRNAs influence the immune system.

In the long run, testing whether these miRNAs can

predict disease outcomes or be used as treatments in

large groups of patients could lead to new strategies for

managing the harmful inflammation seen in severe

cases of COVID-19.

5.1. Conclusions

In conclusion, our study underscores the importance

of miR200b-3p, miR34b-5p, miR203a-3p, Let7g-5p, and IL-

6 in the context of COVID-19. The significant

relationships between these miRNAs and IL-6 levels

highlight their potential as biomarkers and therapeutic

targets, paving the way for advancements in the

diagnosis, prognosis, and treatment of COVID-19.
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