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Abstract

Background: Escherichia coli can cause human diseases and cow mastitis. Use of antibiotics in the treatment of E. coli infections
causes drug residues in dairy products and develops antibiotic resistance. Thus, it is of prime importance to find a new solution for
the treatment of E. coli infection.
Objectives: The present study aimed at constructing a novel cell epitope-based polypeptide vaccine (OmpC-EP) against E. coli infec-
tion.
Methods: Based on the outer membrane protein C (OmpC) of E. coli, we used ABCpred and BepiPred method to obtain its B cell
epitopes, whereas nHLAPred and ProPred methods were used to obtain the CTL and Th cell epitopes, respectively. The predicted
cell epitopes were recomposed using DNASTAR software to obtain a cell epitope-based polypeptide (OmpC-EP) of high antigenicity,
which was purified by Ni-NTA flow resin. Purified OmpC-EP was mice immunized to prepare a polyclonal antibody; Western blotting
analysis was used to detect antibody specificity. Pull down and ELISA detected the interaction between OmpC-EP antibodies and E.
coli. Active immunity mice and challenge of E. coli were used to detect the immune protection of CM-TEP.
Results: A novel epitope peptide (OmpC-EP), with a MW of 12.5 kDa was designed, and Ni-NTA purified OmpC-EP was mice immunized
to prepare a polyclonal antibody. OmpC-EP antiserum had a good specificity and directly interacted with E. coli. Specific immunity
was activated in mice, and OmpC-EP displayed a significant immune protective effect (62.5%), which was slightly higher than that of
the OmpC protein (56.3%) following infection with E. coli.
Conclusions: The results of the present study revealed that OmpC-EP has a good immunogenicity and possesses a significant im-
mune protective function. OmpC-EP is expected to be an approach to construct a vaccine against E. coli.
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1. Background

Escherichia coli is a Gram-negative bacterium, faculta-
tive anaerobic, rod-shaped, and coliform bacterium of the
genus Escherichia. Pathogenic E. coli strains can be cate-
gorized based on elements that can elicit an immune re-
sponse in animals including O antigen, K antigen, and H
antigen. E. coli can enter the digestive tract through the
mouth, causing serious food poisoning, diarrhea, sepsis
(1), and meningitis in children (2). Escherichia coli can also
cause mastitis in cows (3), which can seriously affect the
quality of dairy products, leading to huge economic losses
to the dairy industry every year. Thus, E. coli is an important
zoonotic pathogen (4).

Currently, use of antibiotics in the treatment of E. coli
infections causes drug residues in dairy products, and de-
velops antibiotic resistance (5, 6).Thus, it is necessary to

find a new solution for the treatment of E. coli infections.
The E. coli outer membrane protein (OmpC protein), which
is known to stimulate humoral and cellular immunity in
animals, is an important candidate for constructing a vac-
cine (7, 8). To improve the immune function of the OmpC
protein, we constructed an OmpC epitope vaccine.

Epitope vaccines are a new type of vaccines developed
in recent years. Compared to traditional vaccines, epi-
tope vaccines can easily be recognized by major histo-
compatibility complex (MHC) molecules with different ge-
netic backgrounds (9); they have also been studied for use
against viruses (10), bacteria (11), and cancer immunother-
apy (12). However, epitope peptide vaccines have rarely
been investigated for the treatment of E. coli infections.
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2. Objectives

Based on cell epitope vaccine, this study was aimed
at designing and constructing a novel cell epitope-based
polypeptide vaccine (OmpC-EP) against E. coli infection,
and verifying its immunological function, laying a founda-
tion for the construction of an OmpC protein epitope vac-
cine.

3. Methods

3.1. Ethics Statement

This study was approved by the animal ethical commit-
tee (Ref. no20150207), Shaanxi University of Technology,
China.

3.2. Standard Materials

The E. coli OmpC amino acid sequence was obtained
from the NCBI GenBank (accession number: ADU34074.2).
Synthesis and cloning of the nucleic acid sequences of
the epitope peptide were performed by the Shanghai
Xuguan Biotech Development Corp., China. E. coli intesti-
nal pathogenic bacteria Y17 was obtained from Shaanxi
University of Technology, China. Kunming mice were pur-
chased from Xian Jiaotong University College of Medicine,
China.

3.3. Cell Epitope Analysis

The BepiPred 1.0b (http://www.cbs.dtu.dk/services/
BepiPred/) and ABCpred (http://www.imtech. res.
in/raghava/abcpred/ABC submission. html) (13) soft-
ware programs were used to predict the B cell epitopes
of the E. coli OmpC protein. The neural network–based
MHC Class-I Binding Peptide Prediction Server (nHLAPred)
(http://www.imtech.res.in/raghava/nhlapred/comp.html)
(10) and the MHC Class-II Binding Peptide Prediction Server
(ProPred) (http://www.imtech.res.in/raghava/propred/) (11)
were used to predict the cell epitope peptide segments
of cytotoxic T lymphocytes (CTL) and helper T cells (Th),
respectively. The DNASTAR software was used to optimize
the arrangement of the cell epitopes as the final OmpC
epitope peptide (OmpC-EP).

3.4. Prokaryotic Expression of OmpC-EP

OmpC-EP nucleic acid sequences were synthesized and
cloned in E. coli BL21 by the company. E. coli BL21 harbor-
ing the expression vector was induced by adding 0.1 mM
isopropyl-β-D-thiogalactoside (IPTG) (Sigma, USA). Bacte-
rial cells were harvested by centrifugation after 5 hours fol-
lowing IPTG addition. All samples were heated for 5 min-
utes in boiling water and electrophoresed by SDS-PAGE.
The protein bands were visualized by staining with G-250
(Sigma, USA) (14).

3.5. Purification of OmpC-EP

Bacterial cells were harvested from a large number of
cultures and resuspended in 50 mM sodium phosphate
buffer (pH 8.0) containing 8 M urea and were disrupted by
sonication in an ice bath. The supernatant was collected
and loaded into a column packed with Ni2+-nitriloaceate
and purified by affinity chromatography on Ni-NTA flow
resin (Sigma, USA) (15).

3.6. OmpC-EP Antisera Preparation

Five-week-old Kunming mice with purified protein
(100 µg per mouse) were used and emulsified with
Freund’s Complete Adjuvant (Shanghai Sangon Biotech.
Corp., China), followed by other 2 injections with Freund’s
Incomplete Adjuvant (Shanghai Sangon Biotech. Corp.,
China) at intervals of 14 days. Serum samples were col-
lected from the mice and stored at -80°C.

3.7. Western Blotting Analysis for OmpC-EP Antisera Specificity

Western blotting was performed as described previ-
ously (14). Escherichia coli was prepared for SDS-PAGE and
transferred into a nitrocellulose (NC) membrane (Sigma,
USA). Once the transfer was complete, the membrane was
removed and incubated in blocking solution (5% skim
milk). Then, the NC membrane was incubated with var-
ious dilutions of mouse anti-OmpC-EP for 1 hour at 37°C.
After rinsing, the NC membrane was incubated with rab-
bit anti-mouse horseradish peroxidase (HRP)-conjugated
secondary antibodies (Sigma, USA). The membranes were
developed with the dim-ethylaminoazobenzene (DAB)
(Shanghai Sangon Biotech. Corp., China) substrate system
until maximum bands visualization was reached.

3.8. Pull down and ELISA Assays to Detect the Interaction Be-
tween OmpC-EP Antiserum and E. coli

The bacterial pull down assay was performed as de-
scribed previously (14). Briefly, E. coli cultures of OD600
1.0 were harvested and washed with physiological saline
(0.85% NaCl). After addition of 1% oxymethylene (W/V) for
90 minutes at 80°C and centrifugation at 8000 × g for 10
minutes, the bacterial pellet was resuspended in physio-
logical saline and the final concentration was adjusted to
0.2 OD at 600 nm. One milliliter of bacterial suspension
was transferred into each 1.5 mL tube. After centrifuga-
tion, 100 µL OmpC-EP antiserum at various dilutions was
added to the tubes and 2 µg/µL BSA was used as the nega-
tive control. Then, the bacteria were incubated with rab-
bit anti-mouse horseradish peroxidase (HRP)-conjugated
secondary antibodies. After suspending the bacteria in 20
µL PBS, the samples were transferred to enzyme-labeled
plates, and coloration liquid (50 µL H2O2 and 50 µL TMB)
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was added to each well. After the color reaction, 50µL stop
solution (2 M H2SO4) was added to each well and the ab-
sorbance was read at 450 nm using a microplate reader
(Bio-Rad, USA).

3.9. Active Immunity and Challenge

Mice were randomly divided into groups, and purified
OmpC-EP protein was intraperitoneally injected 2 times at
an interval of 10 days. OmpC-EP protein was emulsified
with Freund’s complete adjuvant (100 µg per mouse) and
Freund’s incomplete adjuvant (100 µg per mouse) was uti-
lized in the primary and booster immunizations, respec-
tively. Immunized mice were intraperitoneally challenged
with 1.0 × 108 CFU/mL E. coli intestinal pathogenic bacte-
rial strain Y17 (15). The control groups were injected with
OmpC protein, PBS, and Freund’s adjuvant, respectively.
Mice were observed for 15 days to measure their relative
percent survivals (RPS). Protection rates were calculated
using the following formula: RPS (%) = 1 - (% vaccinated mor-
tality/% non-vaccinated mortality)× 100. Statistical signif-
icance between groups was tested using SPSS software (15).

4. Results

4.1. In Silico Prediction of B Cell Epitopes

The B cell epitope of the E. coli OmpC protein was pre-
dicted using BepiPred 1.0b (Table 1) and ABCpred (Table 2).
Based on the common epitope sequence predicted by the 2
programs at residues 74 - 90, 129 - 144, 146 - 152, 178 - 194, 213
- 227, the B cell epitope segment of the OmpC protein was
confirmed.

4.2. In Silico Prediction of CTL Cell Epitopes

For nHLAPred-based CTL cell epitope prediction, we
used HLA-A2, HLA-A*0201, HLA-A*0202, HLA-A*0203, and
HLA-A*0205. Based on the common epitope sequences, the
CTL cell epitope segment of the OmpC protein was identi-
fied as GLRPSLAYL, corresponding to positions 291 to 299 of
OmpC (Table 3).

4.3. In Silico Prediction of Th Cell Epitopes

Using the ProPred method and analyzing 3 different
types of peptides, DRB1-0101, DRB1-0102, and DRB1-0301, we
predicted the Th epitopes of E. coli OmpC (Table 4). This
analysis revealed that the FGIGGAISS segment of OmpC,
corresponding to residues 212 to 220, represents the Th cell
epitope.

4.4. Reorganization of the Epitope Series

The B, CTL, and Th epitopes were numbered, and 4
glycine residues (GGGG) were added to the epitope to in-
crease the flexibility of the peptide. Then, different possi-
ble arrangements and combinations were optimized us-
ing the DNAStar software (Figure 1), and the final amino
acid sequence was as follows:

AISSSKRTDAQNTAAGGGGYDVTSWTDVLPEFGGDGGGGV
QYQGKNGSVSGEGMTNGGGGFGIGGAISSGGGGGLRP-
SLAYLGGGGETQVTDQLTGYGQWEYQGGGGYGSDNFM; the
flexible portions are underlined.

4.5. Prokaryotic Expression, Purification, and Antibody Prepa-
ration of OmpC-EP

The nucleic acid sequence of the designed OmpC-EP
peptide was sent to the company and cloned into a pET-
32a plasmid and transformed into an expression strain of E.
coli BL21. Heterologous expression of OmpC-EP in E. coli and
induction with IPTG resulted in the production of a pro-
tein of about 33 kDa in size, as revealed by SDS-PAGE elec-
trophoresis. This is the expected size of the recombinant
protein, which corresponds to a fusion protein of 20.4 kDa
and OmpC-EP of 12.5 kDa (Figure 2). To obtain a reasonable
quantity of recombinant protein for subsequent analyses,
Ni-NTA super flow resin was used (Figures 2 and 3). The pu-
rified recombinant protein was used for antibody prepara-
tion, and the specificity of the prepared antibody was vali-
dated using Western blot analysis. Only a single band was
stained at the molecular mass of the corresponding pro-
tein. Moreover, the band intensity decreased gradually as
the antibody concentration was reduced, indicating that
OmpC-EP antiserum had a good specificity (Figure 3).

4.6. Interaction Between OmpC-EP Peptide Antiserum and E.
coli

ELISA was used to determine the relationship between
E. coli and OmpC-EP antibodies. The OD at 450 nm de-
creased with as serum dilution increased, and it was al-
most zero in control serum (Figure 4). These data indicated
a direct interaction between OmpC-EP antiserum and E.
coli, and showed good immunogenicity.

4.7. Immunization of Mice with OmpC-EP Protects Against E. coli
Infection

An active immunization approach was used to investi-
gate the ability of OmpC-EP to protect mice against infec-
tion. Following infection with E. coli, mice showed severe
symptoms including fluffy hair, wrinkled skin, decreased
activity, decreased food intake, apathy, and lethargy. Many
of the mice died, but those that survived were able to grad-
ually resume activities after 4 days. Antibody titer was
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Table 1. Identification of B Cell Epitopes for the E. coli OmpC Protein Using the BepiPred 1.0b Method

Prediction Method Peptide Segment Position

BepiPred 46 - 55 64 - 93 129 - 144 146 - 152 171 - 203 213 - 244 256 - 262 269 - 275 346 - 354

Table 2. Identification of B Cell Epitopes for the E. coli OmpC Protein Using the ABCpred Method

Analysis Index Analysis Results

Peptide segment position 129 - 145 275 - 291 302 - 318 178 - 194 140 - 156 120 - 136 211 - 227 74 - 90 318 - 334

Score 0.95 0.93 0.92 0.92 0.92 0.92 0.91 0.90 0.90

Figure 1. Antigenic Index of the OmpC-EP
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The predicted epitopes were connected by GGGG flexible regions, making them independent of each other.

Figure 2. Expression and Purification of OmpC-EP

M, protein marker; 1, IPTG-induced strain; 2, non-induced strain (negative control);
3, purified OmpC-EP. Heterologous expression of OmpC-EP in Escherichia coli and in-
duction with IPTG resulted in the production of a protein of approximately 33 kDa
in size, including a fusion protein of 20.4 kDa and OmpC-EP of 12.5 kDa. This is the
expected size of the recombinant protein. A reasonable quantity of OmpC-EP was
purified using the Ni-NTA super flow resin, and produced only one band.

determined prior to bacterial challenge. Titers of 1:3000
and 1:2000 were measured in the immunized mice using
OmpC-EP and OmpC, respectively. No titer was detected

Figure 3. Determination of the Specificity of OmpC-EP Antiserum by Western Blot
Analysis

Lanes 1, 2, and 3 indicate antiserum titers of 1:200, 1:400, and 1:800, respectively; lane
4 was the negative control (immune mice treated with PBS solution). The band in-
tensity decreased gradually as the antibody concentration increased, and only a sin-
gle band was stained.

in control groups. Significant protective rates were ob-
served in immunized animals, OmpC-EP (62.5%, P < 0.01),
and OmpC (56.3%, P < 0.01) (Table 5), indicating that OmpC-
EP is effective against bacterial infection; the protective ef-
fect of OmpC-EP was slightly higher than that of OmpC.
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Table 3. Prediction of CTL Epitopes for the E. coli OmpC Protein

Allele Position Sequence

HLA-A2 5 - 15 VLSLLVPALLV

73 - 81 GYGQWEYQI

113 - 121 RNYGVVYDV

253 - 262 IYLAAQYTQT

291 - 299 GLRPSLAYL

HLA-A*0201 5 - 15 VLSLLVPALLV

291 - 299 GLRPSLAYL

HLA-A*0202 7 - 15 SLLVPALLV

193 - 201 ALRQNGDGV

291 - 299 GLRPSLAYL

HLA-A*0203 254 - 262 YLAAQYTQT

284 - 292 AQYQFDFGL

HLA-A*0205 5 - 17 VLSLLVPALLVAG

33 - 41 DLYGKVDGL

91 - 105 NSWTRVAFAGLKFQD

156 - 164 DFFGLVDGL

186 - 194 VTNNGRDAL

226 - 239 AQNTAAYIGNGDRA

288 - 299 FDFGLRPSLAYL

314 - 322 DILKYVDVG

Figure 4. The Interaction Between OmpC-EP Antiserum and E. coli
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The OD450 value decreased as the serum dilution increased, and was almost zero in
negative control (immune mice treated with PBS solution) serum.

5. Discussion

There are many methods available for predicting B cell
epitopes including BepiPred, ABCpred, and BPAP (16, 17).
Tong used the BepiPred 1.0 server to predict 8 B cell epi-
topes for cockroach (CR) allergies (18). The ABCpred soft-

Table 4. Prediction of Th Epitopes for the E. coli OmpC Protein

Type Peptide Segment Position Sequence

DRB1-0101 5 - 22 VLSLLVPALLVAGAANAA

110 - 119 YGRNYGVVY

141 - 149 FMQQRGNGF

152 - 166 YRNTDFFGLVDGLNF

212 - 220 FGIGGAISS

298 - 306 YLQSKGKNL

325 - 335 YYFNKNMSTYV

DRB1-0102 5 - 22 VLSLLVPALLVAGAANAA

158 - 166 FGLVDGLNF

212 - 220 FGIGGAISS

292 - 300 LRPSLAYLQ

DRB1-0301 5 - 17 VLSLLVPALLVAG

57 - 65 MRLGFKGET

100 - 108 LKFQDVGS

117 - 125 VVYDVTSWT

212 - 220 FGIGGAISS

246 - 254 LKYDANNIY

352 - 367 YYFNKNMSTYV

ware is mainly based on an artificial neural network al-
gorithm and is highly accurate (13). Using BepiPred and
ABCpred, the B cell epitopes were predicted for membrane-
associated proteins of Campylobacter jejuni (13) and Gly m
Bd 28K of soybean allergens (19). This study used a combi-
nation of the BepiPred and ABCpred methods to improve
the accuracy of prediction of the B cell epitope for the
OmpC protein.

CTL cell epitopes play an integral role in the adaptive
immune response (20); and prediction methods include
nHLAPred, IEDB, SYFPEITHI, and IMTECH (21-23). Similarly,
the nHLAPred method has been used to predict CTL cell
epitopes for Leishmania major-related candidate antigens
and HIV Gag protein (10, 23), and they showed high im-
munogenicity. We used the same method to identify a
novel critical epitope, which may play a dominant role in
activating CD8+T cells (10), and thus increasing the devel-
opment of immunogenicity.

T cell epitopes have been predicted indirectly by iden-
tification of MHC-binding molecules (17). The ProPred
method was found to be efficient for Th epitope prediction
of bacterial (11, 24) and viral (25) proteins. The predicted
Th epitope of the OmpC protein could be combined with
MHC-II molecules to enhance the immune response. Epi-
tope joints can be divided into 2 kinds: flexible and rigid
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Table 5. Active Immune Protection Achieved Using the OmpC-EP and OmpC Proteins in Micea

Immune Titer Nos ADR, % RPS, %

OmpC-EP 1:3000 20 30 62.5b

Control-1 (OmpC protein) 1:2000 20 35 56.3b

Control-2 (PBS) 0 20 90 _

Control-3 (Freund’s adjuvant) 0 20 80 _

Abbreviation: ADR, accumulating death rates.
aRPS (%) = 1 - (% vaccinated mortality/% non-vaccinated mortality) × 100.
bP < 0.01 (Compared with control 3). The protective effect of OmpC-EP was higher than that of PBS and Freund’s adjuvant (negative control), and slightly higher than
that of OmpC (positive control). The protective effect of OmpC-EP and OmpC both showed significant protective rates.

(18, 26); frequently-used amino acid connection joints se-
quences are GGGG, AAY, KK, and GGGGS. We used the GGGG
amino acid joint and combined it with the DNAStar soft-
ware (27) to optimize the different epitopes, and obtained
a polypeptide with optimal antigenicity.

Protein antiserum is the basis of immunological func-
tion study. The process for preparation of monoclonal anti-
bodies is complex (28), and polyclonal antibodies have the
advantages of low cost, shorter time period, and high ef-
fect (29). Mouse polyclonal antibodies are commonly used
in immunological studies (30). In this study, we obtained
a specific antiserum using the method of mouse immu-
nization. The ELISA method is widely used to detect inter-
actions between antigens and antibodies (31, 32). In this
study, we observed a direct interaction between OmpC-EP
antiserum and E. coli using an optimized ELISA method.
When E. coli is combined with antibodies, phagocytes
can identify and remove bacteria through their antigen-
presenting function (33). Thus, OmpC-EP is expected to
show good immunogenicity.

OmpC protein shows good immunogenicity and abil-
ity to stimulate the immune system (34, 35). Active im-
munization with the OmpC protein can enhance the resis-
tance of mice and fish and may have protective functions
against different E. coli strains (7, 8). This study designed
cell epitope-based polypeptide OmpC-EP to improve the
immune function of OmpC protein, and demonstrated
that OmpC-EP offers better immune protection than OmpC
protein. Thus, OmpC-EP could be used to reduce the E. coli
infection and public health concern. However, the devel-
opment of a recombinant epitope vaccine is still in initial
stages, and many problems remain to be solved includ-
ing the establishment of more effective epitope screening
methods and construction of epitope vaccine.

6. Conclusions

In conclusion, a novel cell epitope-based polypeptide,
OmpC-EP, for E. coli was designed and confirmed to possess

a significant immune protective function. This study is
adding a new member to the increasing family of epitope-
based vaccine against E. coli infection.
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