The Prevalence of Helicobacter pylori babA2, iceA1 and iceA2 Genes and Their Association with Clinical Outcomes in Patients with Chronic Gastritis, Ulcerative Diseases and Non-Ulcer Dyspepsia in South East of Iran

Hamid Abdollahi 1, Mostafa shokoohi 2, Mohammad Savari 1, *

1 Department of Microbiology, Virology & Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, IR Iran
2 Kerman Physiology Research Center (KPRC), Kerman University of Medical Sciences, Kerman, IR Iran
*Corresponding author: Mohammad Savari, Department of Medical Microbiology, Virology and Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, IR Iran. Tel.: +98-3413221665, Fax: +98-3413221665, E-mail: mohammads78@yahoo.com.

ABSTRACT

Background: Helicobacter pylori virulence factors are important in development of the clinical outcomes. The initial stage of colonization is binding of H. pylori to gastric epithelial cells through the babA protein. Heterogeneity among H. pylori strains in presence and expressing the babA gene may be a factor in the variation of clinical outcomes. Likewise, another recently H. pylori described virulence factor; iceA has been shown to be a marker for ulcerative diseases.

Objectives: We investigated the presence of babA2, iceA1 and iceA2 H. pylori virulence factors in patients with clinical outcomes in the southeast of Iran.

Patients and Methods: In this study, 63 positive culture samples out of 191 biopsies examined to determine of babA2, iceA1 and iceA2 genes by PCR. DNA extracted from 63 Helicobacter positive specimens including 46 chronic active gastritis, 6 ulcerative diseases and non-ulcer dyspepsia 11.

Results: The frequency of the babA2, iceA1 and iceA2 genes in the total isolates were 34 (54%), 14 (22.2%) and 34 (54%), respectively. The association of these virulence factors based on sex and age groups were not statistically significant (P > 0.05). There was a borderline significant association between iceA1 and the clinical outcomes (P = 0.094).

Conclusions: Our study showed that the prevalence of babA2, iceA1 and iceA2 virulence factors were lower than the other studies that highlighted the role of the geographic factor.

Keywords: Helicobacter pylori; Genes; Iran

Copyright © 2013, Ahvaz Jundishapur University of Medical Sciences; Published by Kowsar Corp.
1. Background

Helicobacter pylori is a Gram-negative spiral-shaped, microaerophilic bacterium colonizing the human stomach, and infects more than a half of the world’s population (1). The outcomes of this infection are; gastric inflammation, peptic ulcer, gastric ulcer, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma (2). According to the serological evidences the prevalence of this infection is in the range of 60-80% in Iran (3). The International Agency for Research on Cancer, now classifying *H. pylori* as a class I carcinogenic agents (4). The development of the infection depends on bacterial virulence factors, host susceptibility features and environmental factors such as smoking and diet (5).

The most defined genes associated with virulence in *H. pylori* are the vacA and cagA genes. VacA is a cytotoxin that could be found in 50-65% of the isolates. This cytotoxin induces vacuolation in HeLa or primary gastric epithelial cells *in vitro*. The cagA gene is present in about 60 to 70% of *H. pylori* strains and encodes a high-molecular-weight protein. It’s found that cagA gene is more associated with PUD than in any other clinical outcomes (6).

The adherence of *H. pylori* to the gastric mucosa is considered to play a vital role in the initial colonization and long-term persistence in the human gastric mucosa (7). The BabA adhesin mediates binding of *H. pylori* to the fucosylated Lewis b histo-blood group antigen present on the surface of gastric epithelial cells. In animal models, attachment of *H. pylori* to gastric epithelial cells by babA protein is associated with increased severity of inflammation, development of parietal cell autoantibodies, and parietal cell loss (8). Interactions between BabA and Lewis b related antigens are the best characterized adhesin-receptor interactions in *H. pylori* (9).

Alternatively a recently described *H. pylori* putative virulence factor is iceA (induced by contact with the epithelium), which exists in two allelic forms, iceA1 and iceA2. iceA1 is up regulated by contact of *H. pylori* with the gastric epithelium and has been suggested as a marker for peptic ulcer disease (10). iceA1is replaced by iceA2 at the same locus in many strains. iceA2 is unrelated to iceA1 or other known proteins (11).

The role of the iceAgene product during human infection remains unrecognized and the translational start site of iceA1 has not yet been confirmed, but interestingly, carriage of iceA1 was shown to be weakly but significantly associated with peptic ulcer in studies of *H. pylori* strains in the western countries (12).

2. Objectives

The aim of this present study was to determine the frequency of babA2, iceA1 & iceA2 virulence factors among our local *H. pylori* isolates and their association with the gastric outcomes, including: chronic gastritis, ulcerative disease and non-ulcer dyspepsia (NUD).

3. Patients and Methods

Sixty-three *H. pylori* isolates were obtained from 191 patients’ biopsy samples referred to the endoscopy unit of Afzalipour hospital in Kerman, (southeast of Iran) during 2009. The biopsy samples were cultivated in Brucella agar medium (Merck, Germany), supplemented with 10% defibrinated sheep blood and three antibiotics (vancomycin 10mg/L, amphotericin B 10mg/L and trimetoprim 5mg/L). The inoculated plates were incubated at 37°C under microaerophilic atmosphere provided by anerocult C (Merck, Germany) for 3-5 days. The isolates were recognized as *H. pylori* by urease, catalase, oxidase positive and Gram-negative staining tests (13).

3.1. DNA Extraction and Amplification

DNA was extracted from all 63 *H. pylori* isolates by genomics kit (Bioneer, South Korea) according to the manufacturer’s instruction. PCR conditions were as follows; Reactions were carried out in MWG thermo cycler in 25μl mixtures containing 12.5μl PCR master mix (Cinna gen, Iran), 9.5μl sterile deionized water, 1μl template DNA and 1μl of each oligonucleotide primers (Table 1).

Table 1. Primers Used to Amplification

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>5’-3’ Sequence</th>
<th>Expected Fragment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BabA</td>
<td>Forward: ATCGAAAAAGGAAAAAGTATGAAA</td>
<td>833</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Reverse: TGTAGTGATTCGTTGATGACA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iceA1</td>
<td>Forward: GTGGGTAAGCGTTACAGAATT</td>
<td>567</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Reverse: CATTGTATATCCTATCACATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iceA2</td>
<td>Forward: GTGGGTAACATACAATTAT</td>
<td>229 or 334</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Reverse: TTR²CCCTATTTTCTTAGGT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

² R= A or G
Helicobacter pylori Genes and Association with Clinical Outcomes

Abdollahi H et al.

The cycle temperatures were as followed: Initial denaturation at 95°C for 5mins followed by 30 cycles of denaturation at 95°C for imin, extension at 72°C for imin. The final extension step was extended to 5min at 72°C. For babA2 annealing for imin at 57°C; For iceA1 annealing for imin at 41°C for iceA2 annealing for imin at 43°C.

3.2. Electrophoresis

The PCR products were separated on 1 % agarose gels (CinnaGen, Iran) in TBE 1X (Tris/borate/EDTA) buffer. Bands were visualized under UV gel documentation and photographed. Ethidium bromide (Merck, Germany) as a stain has been added to the agarose gel during preparation to give a concentration of 0.2μl/mL.

3.3. Statistical Analysis

We used absolute and relative frequency to present descriptive statistics. Chi square test as well as the Fisher exact test (when necessary) used to explain analytical statistics. Data were analyzed by SPSS version 16.0.

4. Results

DNA extracted from 63 (33%) H. pylori positive culture specimens biopsies obtained from 25 males and 38 females of whom; 46 (73%) had chronic active gastritis, 6 (9.5%) ulcerative disease includes PU & DU and 11 (17.5%) non-ulcer dyspepsia (NUD). The prevalence of the babA2 was 34 (54%) (Figure 1) and the prevalence of iceA1 and iceA2 genes were 14 (22.2%) (Figure 2) and 34 (54%) (Figure 3), respectively. In this study, the iceA2 amplicons yielded both the 229bp and 334bp fragments (Figure 3).

5. Discussion

This study showed that there was no statistically significant association between babA2 and iceA2 genes and the gastric outcomes, but there was a borderline significant association between iceA1 gene and the gastric outcomes (P value = 0.094). iceA1 prevalence in patients with chronic gastritis and ulcerative diseases was 26.1% and 33.3% respectively while there was no presence of iceA1 gene in isolates from patients with NUD. In addition, babA2 was more common in patients with chronic gastritis and ulcerative diseases; however, it was not statistically significant, but these results could be confirmed as an important role in the beginning of the gastric outcomes (Table 2). There was no association between the age and the sex of the patients and the prevalence of the H.pylori virulence factors (Table 3)

The exact role of the iceA gene is not yet fully understood, nevertheless we detected that iceA2 positive H. pylori isolates and they are more common in patients with NUD (72.7%) however, this finding perhaps due to small
sample size was not statistically significant. On the other hand, there was no presence of iceA1 in patients with NUD and only 45.5% of the NUD patients had the babA2 gene.

Table 2. Association of Virulence Factors With Clinical Outcomes

<table>
<thead>
<tr>
<th>Age, No. (%)</th>
<th>Positive</th>
<th>Negative</th>
<th>Positive</th>
<th>Negative</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastritis (n=46)</td>
<td>24 (52.2)</td>
<td>22 (47.8)</td>
<td>12 (26.1)</td>
<td>34 (73.9)</td>
<td>24 (52.2)</td>
<td>22 (47.8)</td>
</tr>
<tr>
<td>Ulcerative disease (n=6)</td>
<td>5 (83.3)</td>
<td>1 (16.7)</td>
<td>2 (33.3)</td>
<td>4 (66.7)</td>
<td>2 (33.3)</td>
<td>4 (66.7)</td>
</tr>
<tr>
<td>Non-Ulcer dyspepsia (n=11)</td>
<td>5 (45.5)</td>
<td>6 (54.5)</td>
<td>0 (0)</td>
<td>11 (100)</td>
<td>8 (72.7)</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>P value</td>
<td>0.31</td>
<td>0.31</td>
<td>0.094</td>
<td>0.094</td>
<td>0.28</td>
<td>0.28</td>
</tr>
</tbody>
</table>

In the present study, the iceA2 amplification yielded both the 229bp and 334bp fragments. This difference in the fragment size is due to the presence of a 105bp in-frame amplicons present in the 334bp fragment that is absent in the 229bp fragment (14). Ghaseemian et al. announced 71.6% for babA2 gene while we detected this gene in 54% of our local isolates that is controversial but identically as in our study they could not find any significant association between this gene and the clinical outcomes (15).

Talebi Bezmin Abadi et al. detected IceA1 genotype in 64% of their cases and babA2 genotypes in 21.3% while in our study babA2 was more frequent than iceA1 (54% versus 22.2%). As same as our study they did not find a significant association between these two genotypes and the clinical outcomes (16). Probably due to the small sample size in our study, we could not show a statistically significant association between babA gene and the clinical outcomes in spite of its apparent high frequency in certain clinical outcomes but many studies confirm its close relationship with the gastric outcomes.

Grehard et al. (17) indicated that the presence of babA was significantly associated with duodenal ulcer (P = 0.00002) and adenocarcinoma (P = 0.0033) and would be a useful marker to identify patients who are at higher risk for specific H. pylori-related diseases. In another study in Brazil, Oleviera et al. showed that the babA2 and cagA positive H. pylori strains are associated with duodenal ulcers and gastric adenocarcinoma (18). Likewise, our study, Yamaoka et al. did not observe a significant association between the babA2 gene and duodenal ulcer (19).

Mizushima et al. announced that, babA prevalence in Japan is higher than the western countries. They detect the babA gene in approximately 85% of their local isolates while the rate is about 66% to 72% for the western countries. No significant correlation was found between the babA2 genotype and the clinical outcomes (20). In our study, babA gene was detected in 54% of isolates, which is somewhat lower than the above-mentioned geographical locations. Whether such a difference is meaningful or is due to errors, remains to be investigated further.

For the first time Peek et al. introduced the iceA gene (induced by contact with epithelium) and showed that iceA1 strains were significantly associated with peptic ulceration and increased mucosal concentrations of IL-8 (21). Likewise Van doorn et al. announced that isolates with iceA1 are more leading to ulcerative diseases (14). In contrast with Smith et al. study that detected the iceA gene in all of the H. pylori isolates from Nigerian patients; we detected the iceA1 gene in only 22.2% and the iceA2 gene in 54% of our cases, but in accordance to our study they detect no association between the iceA1 allele and peptic ulcer disease (22).

Ito et al. showed that there was no significant difference in the proportions of strains with the iceA1 genotype between peptic ulcer and chronic ulcer groups. They also showed that the iceA1 genotype did not appear to be a reliable marker of peptic ulcer disease among Japanese subjects (23).

Our study showed that the prevalence of babA2, iceA1 and iceA2 virulence factors were lower than the other studies that highlighted the role of the geographic factors. Likewise the lack of a significantly association between babA2, iceA1 and iceA2 virulence factors and the clinical outcomes is maybe due to this fact that the disease development is a multi-factorial process.

Acknowledgements

The authors would like to thank the Research Council of Kerman University of Medical Sciences for their financial supports.
Author's Contribution
None declared.

Financial Disclosure
None declared.

Funding/Support
This study was supported by Research Council of Kerman University of Medical Sciences.

References