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Background: Uropathogenic Escherichia coli (UPEC) with its virulence factors is the most prevalent cause of urinary tract infection (UTI).
Objectives: This study aimed to determine the occurrence of fim, pap, sfa, and afa genes among 100 UPEC isolates collected from patients 
diagnosed with UTI.
Materials and Methods: A total of 100 UPEC isolates were obtained from urine samples of patients with UTI. The prevalence of 5 virulence 
genes encoding type 1 fimbriae (fimH), pili associated with pyelonephritis (pap), S and F1C fimbriae (sfa and foc) and afimbrial adhesins 
(afa) were determined through PCR method. We also investigated the phylogenetic background of all isolates. In addition, the distribution 
of adhesin-encoding operons between the phylogroups was assessed.
Results: The prevalence of genes encoding for fimbrial adhesive systems was 95% for fim, 57% for pap, 16% for foc, and 81% for sfa. The operons 
encoding for afa afimbrial adhesins were identified in 12% of isolates. The various combinations of detected genes were designated as 
virulence patterns. The fim gene, which occurred in strains from all phylogenetic groups (A, B1, B2, and D) was evaluated and no significant 
differences were found among these groups. Conversely, significant differences were observed in relation to pap, afa, foc, and sfa operons.
Conclusions: These results indicate that the PCR method is a powerful genotypic assay for the detection of adhesin-encoding operons. 
Thus, this assay can be recommended for clinical use to detect virulent urinary E. coli strains, as well as epidemiological studies.
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1. Background
Urinary tract infections (UTIs) are common bacterial 

infections associated with considerable morbidity and 
health care cost (1). Escherichia coli strains capable of caus-
ing disease outside the gastrointestinal tract belong to a 
diverse group of isolates referred to as uropathogenic E. 
coli (UPEC) (2). UPEC expresses a multitude of virulence 
factors to break the inertia of the mucosal barrier (3). The 
ability of these bacteria to adhere to host epithelial cells 
is considered a prerequisite for the establishment of in-
fectious diseases, mainly through expression of fimbriae 
(4, 5). UPEC generally possesses type 1 and P fimbriae (6). 
Type 1 fimbriae are characterized as having the ability to 
agglutinate chicken and guinea pig erythrocytes in the 
absence of D mannose (7). They consist of a major pro-
tein, FimA, associated with ancillary proteins FimF, FimG, 
and the adhesin protein FimH, encoded by the fim gene 
cluster (8-10). This type of fimbria is common among En-
terobacteriaceae, also several variants have been strongly 
associated with UPEC (11). Their role in infection is un-

clear, although it has been suggested that they may be 
involved in the initial stages of colonizing in the upper 
respiratory tract (11, 12).

 Of the adhesion-encoding genes studied, pap, sfa, and 
afa are prevalent in E. coli strains associated with urinary 
tract infections (pyelonephritis) in humans (13, 14). The 
pap gene cluster consists of 11 genes encoding the main 
component of the pilus rod (PapA), which determines 
11 different serogroups, and a terminally located adhe-
sion, PapG (15, 16). The afimbrial adhesion from a pyelo-
nephritic E. coli isolate is P-independent, X-binding ad-
hesion, expressed by the afa-1 operon (17) mediating the 
specific binding to uroepithelial cell and human erythro-
cyte-receptors (18). The nature of the receptor on the eu-
karyotic cell surface is still unknown. The S fimbriae are 
mannose-resistant adhesions, encoded by the sfa operon 
of uropathogenic E. coli (9). The presence of S fimbriae 
is also correlated with pathogenicity of E. coli in human 
meningitis and septicemia (19). The distribution pattern 
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of afimbrial adhesin, S fimbriae and group II capsule syn-
thesis such as foc and afa in the UPEC strains is still un-
clear in different parts of Iran. The purpose of this study 
was to compare the occurrence of fim, pap, sfa, and afa 
genes in E. coli strains isolated from patients with urinary 
tract infection residing in the southeast of Iran.

2. Objectives
This study aimed to evaluate the prevalence of differ-

ent operons encoding for virulence factors among E. coli 
strains isolated from the urine of the patients with UTI.

3. Materials and Methods

3.1. Bacterial Isolates
One hundred non-duplicate E. coli isolates were recov-

ered by urine culture from 250 consecutive adult patients 
with community-acquired pyelonephritis or cystitis over 
a period ranging from April to September 2013 in Zabol, 
Iran. The isolation and identification of E. coli isolates were 
performed by standard bacteriological and biochemical 
tests using Gram staining, catalase test, indole, methyl red, 
Voges-Proskauer test, nitrate reduction, urease produc-
tion, Simmons citrate agar, and various sugar fermenta-
tion tests (20-22). The bacteria were maintained in Tryptic 
Soy Broth (TSB) (Sigma; The USA) with Glycerol at -70°C.

3.2. Clinical Data
The diagnosis of acute pyelonephritis and cystitis was 

based on the cytobacteriologic examination of urine 
and clinical investigation. UTI was defined as the pres-
ence of a positive urine culture (≥ 105 colony-forming 
units (cfu)/mL) and pyuria (≥ 104 leukocytes/mL of clean 
voided urine) (13). Diagnostic criteria for acute pyelo-
nephritis were dysuria, temperature of ≥ 38.5°C, leuko-
cyturia of > 105 mL, and no other identifiable source of 
infection (23).

3.3. Bacterial Culture and DNA Extraction
DNA extraction was performed using an optimized boil-

ing method. E. coli strains were grown in Luria-Bertani 
(LB) Broth (Lonza; The USA) at 37°C overnight. Bacteria 
were pelleted from 1.5 mL LB broth and suspended in 200 
uL of sterile distilled water, then incubated at 100°C for 10 
minutes and centrifuged. One hundred microliters of the 
supernatant was stored at -20°C as a template DNA stock 
(13).

3.4. Polymerase Chain Reaction Amplification
Specific primers were used to amplify sequences of the 

fim, pap, sfa/foc, and afa operons. Details of primer se-
quences, predicted sizes of the amplified products, and 
specific annealing temperatures are shown in Table 1. De-
tection of adhesin-encoding operons (pap, sfa, and afa) 
and fim sequences was done by multiplex PCR.

The reactions (25 μL) consisted of 10-pmol/L of each 
primer, 2 μL templates DNA, and 12.5 μL of a ready-to-use 
2X PCR Master Mix Red (Ampliqon; Denmark) (27), with 
the following amplification conditions: an initial dena-
turation at 94°C for 10 minutes, followed by 35 DNA cy-
cles of denaturation at 94°C for 2 minutes, annealing at 
a specific temperature for 30 seconds (Table 1), and exten-
sion at 72°C for 1 minute. A 5 µL aliquot of the PCR product 
underwent gel electrophoresis on agarose 2%, followed 
by staining with ethidium bromide solution. Ampli-
fied DNA elements of specific sizes were detected by UV-
induced fluorescence and the size of the amplicons was 
estimated by comparing them with the 1 kb DNA ladder 
(Promega; Madison, WI, the United States of America) in-
cluded on the same gel (Figure 1). The phylogenetic group 
to which the E. coli strains belonged was determined by a 
PCR-based method as described previously (28). The data 
of the 3 amplifications resulted in the assignment of the 
strains to phylogenetic groups as follows: chuA+, yjaA+, 
group B2; chuA+, yjaA-, group D; chuA-, TspE4.C2+, groupB1; 
chuA-, TspE4.C2-, group A (28).

Table 1.  Primers and Cycling Conditions Used for Amplification of Fimbriae Genes

Gene Sequence (5’ to 3’) Size, bp Cycling Conditions Reference

fim GTTGTTCTGTCGGCTCTGTC TAAATGTCG-
CACCATCCAG

400 95°C for 4 min; 35 cycles of 95°C for 30 s, 55°C for 
30 s, 72°C for 40 s; 72°C for 3 min

(24)

pap GACGGCTGTACTGCAGGGTGTGGCG 
ATATCCTTTCTGCAGGGATGCAATA

328 95°C for 4 min; 35 cycles of 95°C for 60 s, 65°C for 
60 s, 72°C for 60 s; 72°C for 2 min

(25)

sfa CCGTAAAGATGTCTGCGAG AGCAAGTCTG-
GCAACGAG

100 95°C for 4 min; 35 cycles of 95°C for 30 s, 53°C for 
30 s, 72°C for 40 s; 72°C for 3 min

(24)

foc GGTGGAACCGCAGAAAATAC GAACT-
GTTGGGGAAAGAGTG

388 95°C for 4 min; 35 cycles of 95°C for 60 s, 58°C for 
60 s, 72°C for 120 s; 72°C for 10 min

(26)

afa GCTGGGCAGCAAACTGATAACTCTC CAT-
CAAGCTGTTTGTTCGTCCGCCG

750 95°C for 5 min; 35 cycles of 95°C for 60 s, 60°C for 
30 s, 72°C for 180 s; 72°C for 7 min

(25)
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Figure 1. Multiplex- PCR profiles specific for E. coli phylogenetic groups 
and detection of virulence genes.

Lane M: Molecular weight marker 100 bp DNA ladder; Lane 1: amplified sfa 
100 bp; Lane 2: amplified pap gene 328 bp; Lane 3: amplified fim gene 400 
bp; Lane 4: amplified foc gene 388 bp and Lane 5: amplified afa gene 750 bp.

4. Results
The frequencies of the studied virulence genes are re-

ported in Tables 2 and 3. With regard to adhesin virulence 

determinants, fim gene was the most common virulence 
gene and detected in 95% (95 out of 100) of the UTI iso-
lates. Next, pap gene was present in 57% (57 out of 100) of 
isolates and sfa gene in 81% of isolates. Finally, afa and foc 
genes were found in 12% and 16% of isolates, respectively. 
One isolate was negative for all virulence genes. Based on 
the distribution of the various targeted sequences, all 
studied strains exhibited 16 virulence gene patterns, re-
ferred to as Ec (Table 2). Ec5 was characterized by the pres-
ence of fim operon only, and was the most noted pattern, 
found in 8 isolates. However, among 95% of isolates that 
were fim-positive, 2% harbored the foc gene and the other 
85% exhibited distinct diversity of gene patterns (Ec1 - 4, 
Ec6, Ec8 - 9, and Ec12 - 15). Out of 100 UPEC isolates tested 
by PCR, 36% carried sequences related to the 3 adhesion-
encoding (fim, sfa, and pap) operon families. 

When the strains recovered from all the populations 
were considered, B2 and D group strains were the most 
common (55 and 22%, respectively), followed by A group 
strains (17%). B1 group strains were rare (6%) (Table 3). 
Most of the known extraintestinal VFs (pap, sfa, and fim 
genes) were concentrated within groups B2 or D, whereas 
foc gene was more broadly distributed between phylo-
genetic groups B2 and A (Table 3). Of the isolates tested, 
a few isolates belonged to either phylogenetic group (A, 
B1, and D) were positive for pap, afa, foc and sfa operons, 
compared to phylogenetic group B2. Evaluation of the 
foc operon indicated its presence in 1% and 16% of isolates 
belonged to phylogenetic groups A and B2, respectively, 
but it was not observed in phylogenetic groups B1 and D 
isolates (Table 3).

Table 2.  Virulence Patterns Identified Among the Studied Strains

Pattern Virulence Gene

fim sfa pap foc afa No. of Strains Phylogenetic Group

Ec1 + + + + + 1 B2

Ec2 + + + + - 9 B2

Ec3 + + + - - 36 A, B1, B2, and D

Ec4 + + - - - 21 A, B1, B2, and D

Ec5 + - - - - 8 A, B1, B2, and D

Ec6 + - + + - 1 B2

Ec7 - + + + + 2 B2 and A

Ec8 + + + - + 2 B2 and D

Ec9 + + - + - 3 B2

Ec10 + - + - - 5 B2 and D

Ec11 - + - - + 2 A and D

Ec12 + + - - + 5 B2, D, and A

Ec13 + - - + - 2 B2 and A

Ec14 + - - - + 1 B2

Ec15 + - + - + 1 B2

Ec16 - - - - - 1 A

Total 95 81 57 16 12 100
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Table 3.  Phylogenetic Distribution of Virulence Genes

Ph. Group (N) Virulence Gene

Fim sfa pap foc afa

A (17) 14 12 2 1 2

B1 (6) 5 5 3 0 0

B2 (55) 55 46 46 16 5

D (22) 21 18 6 0 5

TOTAL (100) 95 81 57 17 12

5. Discussion
Escherichia coli causes the vast majority of UTIs in both 

ambulatory and hospitalized patients (29). The degree 
of severity depends on the virulence of the responsible 
strains and susceptibility of the host, particularly if there 
is a concomitant urological illness. A better knowledge of 
the virulence characteristics of the microorganism caus-
ing the infection will allow the clinician to anticipate, up 
to a point, the evolution of infection in the patient. To the 
best of our knowledge, our study was the first to dem-
onstrate associations between E. coli adhesin-encoding 
operons and UTI in Iran. Several virulence determinants 
contribute to the pathogenicity of E. coli in UTI (17, 19, 27). 
They are the product of different genes, which can be de-
tected by PCR method (9, 22). However, there is always the 
possibility of mutation at the level of the corresponding 
gene, leading to the absence of its detection. Therefore, 
a positive PCR shows the presence of the virulence gene, 
but a negative PCR does not rule out the presence of the 
corresponding operon. However, this phenomenon re-
mains scarce.

Genes coding for adhesive systems represent the most 
common factors for the virulence of E. coli in UTI. The dis-
tribution of adhesin-encoding operons in our strains was 
in agreement with other published data (30-32). The pres-
ent data indicate the crucial role of these adhesin-encod-
ing operons in E. coli-associated UTI (33, 34). Moreover, an 
important role of pap adhesion genes in the pathophysi-
ology of UTIs caused by E. coli has been reported in several 
studies (32, 35). In addition, the presence of foc and afa vir-
ulence genes was 16% and 12%, respectively. The presence 
of combined pap and afa virulence genes was observed 
in 50% of isolates, indicating high presence of virulence 
genes in isolates collected from patients with UTIs in Iran 
as described (32, 36). The presence of higher number of 
observed combined pap and sfa genes was in accordance 
with other reports (30-32). The higher number of isolates 
having pap and sfa genes together as compared to other 
combinations could be due to the localization of these 
genes on the same pathogenicity island of UPEC strains 
(37). Our results show a higher frequency of fim operon 
compared to the rest of the genes, which may indicate a 
crucial role of the virulence genes in E. coli causing UTI.

 Regarding P fimbriae, our results are inconsistent with 
those of many studies, indicating that among patients 

with UTIs, 57% possess P fimbriae (13, 32). The difference of 
occurrence in the percentage of the structural adhesins 
(P fimbriae) may be due to the different environmental 
niches prevailing at the two different host sites, as de-
scribed previously (38). In contrast to other studies, the 
sfa operon was observed in 80% in UTIs isolates (13, 35, 39). 
This may indicate that sfa operon plays an important role 
in causing UTI in Zabol, southeast of Iran. In addition, we 
propose a more significant role for fim, pap, and sfa op-
erons in the generation of UTI. Based on the distribution 
of the various target sequences, the strains studied exhib-
ited 16 most common virulence patterns, referred to as 
Ec followed by an Arabic numeral (Table 2). The UTIs iso-
lates exhibited a great diversity of gene patterns, show-
ing Ec1, Ec2, Ec3, and Ec16 patterns that were in agree-
ment with other report (13, 40). The presence of the foc 
operon together with the pap operon was detected in the 
same strains as the Ec1, Ec2, Ec6, and Ec9 pattern (Table 
2); this association had been previously reported (13). A 
codependence of these virulence factors in a particular 
pathogenic pathway has been discussed (40) but needs 
to be confirmed. 

When phylogenetic analysis of these virulence factors 
is done, a striking difference was observed between the 
foc operon on one hand, and the other pathogenic deter-
minants, including the fim, sfa, and pap operon, on the 
other hand. The foc operon is strictly restricted to strains 
of the phylogenetic B2 group (16 out of 17) and phyloge-
netic A group (1 out of 17) (Table 3). Similarly, Maslow et al. 
(41) reported that within adult bloodstream isolates, the 
presence of this operon was restricted to one cluster. In 
contrast, the other pathogenic determinants, although 
being predominant in the B2 group, are also distributed 
among the other phylogenetic groups. It can be proposed 
that most of the genes needed for causing neonatal men-
ingitis belonged to the E. coli B2 phylogenetic group ini-
tially and horizontal transfer of these genes has occurred 
toward the more genetically distant groups.

In conclusion, our study showed that: 1) a high preva-
lence of fin, pap, and sfa operon may be responsible for 
UTIs, 2) the characterization of E. coli strains isolated 
from UTI is of great interest to improve our knowledge 
regarding their virulence genetic determinants, (3) fur-
ther studies are needed to identify E. coli virulence factors 
responsible for UTI and to determine the physiopathol-
ogy of these infections to consider possible preventive 
measures.
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