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Abstract

Background: The non-toxigenic variant of Clostridium difficile is prevalent in clinical samples. The reason for the high prevalence
of these strains in the clinical diarrhea specimens has not yet been studied.
Objectives: Evaluation of spore production in non-toxigenic C. difficile isolates (A-/B-/CDT-) compared to toxigenic isolates
(A+/B+/CDT-) in the absence and presence of antibiotics.
Methods: Minimum inhibitory concentration (MIC) for bacteria was performed by the microdilution technique. About ~ 106 bac-
teria from 18-hour culture were inoculated to pre-reduced media containing ½ × MIC of vancomycin (VAN), clindamycin (CLI) and
ceftazidime (CAZ). After 24, 48, and 96 hours, one milliliter of broth culture was added and heated for killing vegetative forms. One
hundred microliters of appropriate dilution were cultured on Columbia blood agar in triplicate. After 72 hours, the number of
viable spores was counted based on the colony forming unit.
Results: The result showed the spore production of non-toxigenic C. difficile isolates in free antibiotic media and ½ × MIC of an-
tibiotics was similar to toxigenic isolates. The VAN, CLI, and CAZ inhibited spore production in non-toxigenic isolates as much as
toxigenic isolates of C. difficile.
Conclusions: It seems the non-toxigenic C. difficile isolates are able to produce spores in the absence and presence of antibiotic in
a similar manner to toxigenic isolates. Generally, their ability to produce toxin is lost, but they are able to remain, sporulate, and
survive in hospitalized patients who receive antibiotics.
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1. Background

Sporulation is one of the important properties of
Clostridium difficile. The bacterium is disseminated in the
anaerobic condition of the colon and environment by the
formation of spore and survives for a long time in harsh
conditions. The spore is very important for spore-forming
bacteria such as C. difficile. Because their infections are
transferred by spores (1). Clostridium difficile contains sev-
eral toxin-producing variants, whether may or may not
be associated with the C. difficile antibiotic-associated di-
arrhea (AAD). These toxin-producing variants consist of
C. difficile A+/B+/CDT-, A+/B+/CDT+, A-/B+/CDT-, A-/B+/CDT+,
A-/B-/CDT+, A+/B+/CDT-, A+/B-/CDT-, A-/B-/CDT-, and A+/B-/CDT-

(2, 3).

The most prevalent type of C. difficile in clinical samples
is the A+/B+/CDT- toxin producing type (4). There is another
variant, A-/B-/CDT-, which is common in the clinical speci-
mens. Based on the type of sample source, geographical
area, age, and detection methods vary from 42% - 50% (5, 6).
This non-producing type is prevalent in the stool samples
that are collected from environmental samples (30.8%) and
hospitalized patients (6.5%) (7), in-patient wards (8.5 - 46%)
(8-10), hospitalized infants (63%) (11), in- and out-patient in-
fants (58% - 82%) (12) and in a neonate intensive care unit in
Japan (96%) (13). Some researchers have considered them
to be pathogenic forms (14), while others consider them
to be non-pathogenic (5). Some investigators have men-
tioned these strains are helpful because common antibod-
ies against non-pathogenic strains (A-/B-/CDT-) protect the
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individuals against infections with the toxigenic variants
(15).

2. Objectives

Since the ability of spore formation must be a key
property that helps the non-toxigenic isolates to survive in
the nature or clinical samples; therefore, the aim of this
study is to evaluate spore production capability of non-
pathogenic of C. difficile isolates (A-/B-/CDT-) compared to
toxigenic C. difficile (A+/B+/CDT-) in the absence and pres-
ence of antibiotic in the laboratory condition.

3. Methods

3.1. Bacterial Isolates

Two non-toxigenic C. difficile isolates (A-/B-/CDT-) and
one toxigenic A+/B+/CDT- were isolated from diarrhea sam-
ples (16). The C. difficile ATCC 9689 (A+/B+/CDT-) was pre-
pared from the microbial collection of Microbiology De-
partment of Kerman University of Medical Sciences. All iso-
lates were confirmed by latex agglutination test as C. diffi-
cile. The existence of toxin genes and the ability of toxin
production were confirmed by the PCR method and com-
mercially ELISA technique, respectively (17-20). In brief, the
isolates were cultured on brain heart infusion (BHI) blood
(5% defibrinated sheep blood) agar at 37 ºC for 24 hours in
an anaerobic jar (Merck, Germany). The DNA was extracted
from them by commercially kit (CinnaGen, Iran). The exis-
tence of tcdA and tcdB genes was carried by PCR method ac-
cording to the previous study (20). For the ability of toxin
production, the isolates were cultured in the pre-reduced
medium [BHI broth (GIBCO, Scotland) supplemented with
1% yeast extract (BBL, USA) and 0.5% L-cysteine (Merck, Ger-
many)] for 48 hours in the anaerobic jar. The supernatants
were separated by centrifuge and used for toxin produc-
tion evaluation. The ability of toxin production was per-
formed by C. difficile A & B ELISA kit (tgc BioMic, Germany)
according to the kit’s guidelines (21). This kit detects toxins
(A & B) in supernatant simultaneously.

3.2. Minimum Inhibitory Concentration Determination

Minimum inhibitory concentration (MIC) of three clin-
ical isolates and ATCC 9689 strains was performed in
triplicates for (ceftazidime) CAZ, (clindamycin) CLI and
(vancomycin) VAN (all Sigma, USA) by the microdilution
method (22). In brief, the isolates were cultured on BHI
agar supplemented with 5% defibrinated sheep blood and
incubated in the anaerobic jar for 18 hours. The bacterial
suspension was prepared upon 0.5 McFarland (1.5 × 108

CFU/mL) and used for inoculation to the tube containing
pre-reduced medium (PRM) (control and ½ × MIC of VAN,

CLI, and CAZ). Micro-titer plates containing ½ × MIC an-
tibiotics in pre-reduced medium two-fold serially diluted
were inoculated with ~ 106 colony forming unit (CFU)/mL
from fresh bacterial suspension (18-hour culture), and in-
cubated in an anaerobic jar (23). The MIC was recorded
after two days (24). The bacterial suspension preparation
and inoculation to the tube with PRM were performed less
than 30 minutes (25).

3.3. Culturing and Spore counting

Approximately ~ 106 CFU/mL bacteria from the suspen-
sion (1.5 × 108 CFU/mL) of 18-hour culture were inoculated
to the 5 mL tubes (controls and each of the antibiotics) and
incubated in anaerobic condition for 24, 48, and 96 hours
at 37°C (22). At the appropriate times (24, 48, and 96 hours),
one milliliter of the cultures (control medium and the
media containing ½ × MIC) was frozen at 70°C. After one
month the frozen cultures were thawed at room temper-
ature and heated 10 minutes at 80°C to kill the vegetative
form and for the spores to become pre-activated (26). After
preparation of serial dilution, 100µL of the heated cultures
were inoculated to Columbia blood agar (BBL, USA) sup-
plemented with 5% defibrinated sheep blood. The plates
were incubated under anaerobic jar for 72 hours at 37ºC. Ac-
cording to the investigation of Aldape and colleagues, the
number of viable spores was counted (27). For reducing the
toxic effects of oxygen, all stages were performed in less
than 15 minutes (28). All experiments were performed in
triplicate.

4. Results

4.1. Minimum Inhibitory Concentration

The MIC of C. difficile ATCC 9689 strain and clinical iso-
lates (toxigenic and non-toxigenic) isolates are shown in
Table 1. All isolates and ATCC 9689 were sensitive to VAN,
CLI, and CAZ (23, 29).

4.2. Control

Two clinical toxin non-producing types of C. difficile iso-
lates and two toxin producing types (ATCC 9689 and a clin-
ical isolate) started spore production within 24 hours and
reached the maximum level at 48 hours. The maximum
level of spore production was 6.5 Log/mL in the case of non-
toxigenic isolate. In total toxigenic and the non-toxigenic
isolates had a similar pattern in spore production at differ-
ent times (Figure 1).
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Table 1. MIC and ½ × MIC of Clinical Isolates and ATCC 9689 Strain for VAN, CLI, and CAZ

Clostridium difficile Toxigenic C. difficile Non-Toxigenic C. difficile

Isolate source ATCC 9689 Clinical Clinical 1 Clinical 2

Toxin production type A+/B+/CDT- A+/B+/CDT- A-/B-/CDT- A-/B-/CDT-

MIC, µg/mL

VAN 0.5 ± 0 0.5 ± 0 0.84 ± 0.29 0.42 ± 0.14

CLI 1 ± 0 2 ± 0 3.4 ± 1.1 2 ± 0

CAZ 13.4 ± 4.6 8 ± 0 2 ± 0 6.7 ± 2.3

½ × MICa , µg/mL

VAN 0.25 0.25 0.5 0.25

CLI 0.5 1 2 1

CAZ 8 4 1 4

Abbreviation: MIC, minimum inhibitory concentration.
aMIC was performed in triplicate. It may differ in the three wells. Therefore, the highest concentration was selected for assays.
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Figure 1. Spore production of toxigenic and non-toxigenic isolates of Clostridium
difficile in the control media (without antibiotic) at 24, 48, and 96 hours

4.3. Vancomycin, Clindamycin and Ceftazidime

Non-toxigenic isolates similar to toxigenic ones (ATCC
9689 strain and clinical isolate) in the media (with ½×MIC
of antibiotics) started the spore production within 24
hours and continued it until 48-hour incubation. In addi-
tion, the spore production of ATCC 9689 strain did not stop
at 48 hours, while continued and reached 4.3 to 6.5 Log/mL
after 48-96-hour incubation. In the ½×MIC of antibiotic
(VAN, CLI, and CAZ), the pattern of the spore production
was similar in toxigenic and non-toxigenic isolates. The
number of produced spores was 1.7 - 3.2, 2.3 - 3.3, and 2 -
3.5 for VAN, CLI, and CAZ, respectively. Generally, VAN, CLI,
and CAZ inhibited the spore production in toxigenic and
non-toxigenic isolates (Figures 2-4). All isolates (either tox-
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Figure 2. Spore production of toxigenic and non-toxigenic isolates of Clostridium
difficile in the in the ½ × MIC of VAN at 24, 48, and 96 hours

igenic or non-toxigenic strains) and ATCC 9689 strain con-
tinued to spore production until 96 hours in the media
containing ½ MIC of VAN, CLI, and CAZ. While in the con-
trol, media the number of formed spores was similar to 48-
hour-periods or sometimes less than 48 hours (Figures 1-4).

5. Discussion

Because of deletion, insertion, and point mutations in
the regulatory genes and pathogenicity loci, non-toxigenic
isolates of C. difficile have lost the capability of toxin pro-
duction (3, 30). However, it is noted that non-toxigenic
strains protect the individual against the infection of tox-
igenic strains (31). The previous studies have mostly in-
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Figure 3. Spore production of toxigenic and non-toxigenic isolates of Clostridium
difficile in the ½ × MIC of CLI at 24, 48, and 96 hours
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Figure 4. Spore production of toxigenic and non-toxigenic isolates of Clostridium
difficile in the ½ × MIC of CAZ at 24, 48, and 96 hours

sisted on the investigation of spore production in the vir-
ulent and hypervirulent strains such as C. difficile ribotype
02, 014, 018, and 027 (32, 33). The investigation in different
aspects showed the sporulation is an intrinsic and genetic
property and it is related to the type of C. difficile (33, 34).
The isolates of C. difficile with a high power of sporulation
are more virulent and are more related to recurrent infec-
tion (35). In our study and based on the literature, it seems
the non-toxigenic C. difficile isolates produce spore, simi-
lar to toxigenic isolates in the free antibiotic medial and
probably in their natural environment (colon). They have
retained the capability of spore production.

Clostridium difficile is the most antibiotic-associated di-
arrhea pathogen and produces spores in the natural envi-
ronment (colon) in the presence the antibiotics (36). There-
fore, spore production of C. difficile strain in the presence

of antibiotics was performed and it was shown that the an-
tibiotics might or might not inhibit the sporulation. The
VAN and fidaxomicin as the treatment choice of C. difficile
AAD inhibit sporulation in the C. difficile UK14, ATCC 43255,
and ATCC 9689 strains. While another choice treatment
of C. difficile infections, metronidazole inhibits the spore
production in the ATCC 9689 strain and enhances it in the
ATCC 53255 (27, 37). In this study, the VAN inhibits spore
production in all of the clinical isolates (non-toxigenic and
toxigenic) and ATCC 9689 strain. The rate of decline was
about 1.5 - 3 Log/mL depending on the isolates and period
of incubation. The non-toxigenic isolates and the toxigenic
strains (clinical isolate and ATCC 9689) have similar behav-
ior in the presence of VAN.

The effect of CLI and CAZ on spore production has not
yet been explored. However, tigecycline as a protein in-
hibitor has reduced sporulation in the hypervirulent C.
difficile ribotype 027. While it has enhanced the number
of spores in ATCC 9689 strain (27). The spore production
of three clinical isolates in the sub-MIC of CLI and CAZ
has a similar pattern, and even more similar to VAN. The
data show the CLI and CAZ inhibit the spore production
in non-toxigenic isolates in the same manner of toxigenic
strains. The reason for either inhibition or reduction of the
spore production in sub-MIC of antibiotic is not well un-
derstood. The previous studies impact on the expression
of those genes related to sporulation (27, 37). Incidentally,
the prevalence of the non-toxigenic strain of C. difficile is
high in the clinical samples (5, 7-12, 14). It is a good property
of the non-toxigenic strains, which still maintain the capa-
bility of sporulation. In particular, non-pathogenic strains
are not only harmful but also they are considered useful.

5.1. Conclusions

In summary, the previous studies have insisted on
sporulation in the hypervirulent strains. In this study,
non-toxigenic strains were evaluated and the data revealed
non-toxigenic isolates have the similar potential capability
of sporulation in the absence or presence of the sub-lethal
concentration of antibiotics. It was also postulated why
the prevalence of non-toxigenic isolates in diarrheal sam-
ples is high. Although these strains have lost the potential
of toxin production; they have kept the ability to produce
spore.
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