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Abstract

Background: Candida infection currently presents a major problem. The natural products from endophytic bacteria are thought
to have a strong potential for treatment.
Objectives: The present study aimed to isolate endophytic bacteria from Dryopteris uniformis, its identification, and investigation
of their anticandidal activity and confirm it.
Methods: The isolated endophytic bacteria from D. uniformis were identified by using 16S rRNA gene sequencing. The anticandidal
assay of endophytic bacteria was performed by using the patch method. Endophytic bacteria were successively fractionated by using
different polarity solvents. The anticandidal activity of each solvent fraction was evaluated by using the disc diffusion method and
was confirmed by scanning electron microscopy.
Results: Fifty-one endophytic bacteria were isolated from the lead and stem/root of D. uniformis and screened for anticandidal ac-
tivity against five Candida species, Candida saitoana (KACC 41238), C. albicans (KACC 30062), C. albicans (KACC 30003), C. glabrata
(KBNO6P00368) and C. glochares (KACC 30061). Among these, six endophytic bacteria exhibited strong anticandidal activity with an
inhibition zone diameter between 9.29 and 47.67 mm against four Candida species; these bacteria were identified as Burkholderia
sp. UR 1-07 (DUS14), Staphylococcus sp. WW60 (DUS56), Bacillus sp. cryopeg (DUS59), Paenibacillus sp. rif200865 (DUL128), Staphylococ-
cus warneri (DUS130), and Bacillus psychrodurans (DUS131) using 16S rRNA gene sequencing. The minimum inhibitory concentration
(MIC) of the butanol fraction of the selected endophytic bacteria, Burkholderia sp., was 250 µg/mL and the minimum fungicidal
concentration (MFC) was 500 µg/mL. Scanning electron microscopy result indicated that, MIC of promising endophytic bacteria
Burkholderia sp. destroyed the target Candida cells.
Conclusions: This study demonstrated anticandidal potential of endophytic bacteria derived from D. uniformis.

Keywords: Anticandidal Activity, Bacillus psychrodurans, Burkholderia sp., Candida Species, Dryopteris Uniformis, Endophytes,
Paenibacillus sp.

1. Background

The most deleterious fungal infections to humans are
caused by Candida species (1-3). Collectively, they are re-
sponsible for a huge number of infections in humans, from
superficial candidiasis to life-threatening candidiasis (3).
In the genus there are around 150 species, but most of
the contagions are instigated by the Candida albicans, C.
glabrata, and a small number of other species (3, 4). Can-
dida albicans accounts for half of the dispersed disease
and, as the most dominant species, is capable of causing
life-threatening infectious disease (5). Candida glabrata is
a dangerous pathogen that is remarkably important for
its intrinsic tendency to develop resistance to antifungal
drugs (6). It is the second main cause of fungal infections

in humans (7).

All species across the plant kingdom have been found
to harbor endophytes (8). Endophytic microbes are mostly
bacteria or fungi that reside inside the living tissue of
plants without any injury to their hosts and can be vastly
diverse source of natural bioactive products (9, 10). Endo-
phytes have been described in several distinguished ther-
apeutic plants, ornamental plants, fruit plants, and weeds
from wild and cultivated locations. Mutually endophytic
bacteria and endophytic fungi be able to co-exist in a par-
ticular host plant without any conflict (11, 12). Generally
through the roots and the aerial portions of plants endo-
phytes enter to plants, such as stems, flowers, cotyledons
and leaves (13). At the point of entry they are localized and
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be able to grow in the body of host plant (14). Once entering
the host, they live inside cells, in the vascular tissue system
or in the intercellular places (15). After getting residence
inside the plant tissues, the endophytes are well-known to
produce a various types of organic products that can act as
a steady and successful resource for drugs. Thus, natural
products from endophytes are considered to have a huge
prospective not only in the pharmacological trade, but also
in the biotechnology and agrochemical trades (16).

Endophytic bacteria are known to have a number of
bioactive compounds and are known to offer potential
broad spectrum antimicrobial potential activity (17); there-
fore, they may be potential natural control agents against
diverse fungal diseases (18-21) or have antimicrobial poten-
tial (18-20). Endophytic bacteria isolated from medicinal
plants, such as Tinospora cordifolia Miers, Memecylon edule
Roxb., Dipterocarpus tuberculatus Roxb., and Phyllodium pul-
chellum (Benth.) Desv., have displayed antimicrobial activ-
ity (22). The anticandidal potential of endophytic bacteria
is highly dependent on their genotype and their chemical
compositions. The fern Dryopteris uniformis (Makino) is a
commonly available plant in the Korean peninsula and is
used as both a food plant and an ornamental plant (23).
The diversity of endophytic fungi from ferns has been re-
ported, but there are no reports on endophytic bacteria
distribution and application within a fern (24, 25). The
search for new biological products derived from endo-
phytic bacteria is likely to be successful as endophytic bac-
teria are capable antifungals to fight against resistant fun-
gal species (26).

2. Objectives

Consequently, in the current study we aimed to isolate
endophytic bacteria from D. uniformis, identify them, inves-
tigated their anticandidal potential and confirm their an-
ticandidal potential.

3. Methods

3.1. Collection, Isolation, and Morphological Illustration of En-
dophytic Bacteria

Dryopteris uniformis was collected from Bohyun Moun-
tain, Yeongchun, Kyungbuk province, Republic of Korea
and identified by Prof. Seonjoo Park, a plant taxonomist
at Department of Life Sciences, Yeungnam University. The
specimen was deposited as the Voucher ID: AR0009 (2015)
at YNUH (Yeungnam University Herbarium), South Korea.
The isolation of endophytic bacteria was conducted by us-
ing a standard protocol (27). Two grams of separated tis-
sues (leaf, stem/root) of D. uniformis were washed thor-

oughly in tap water to remove the soil. Surface steriliza-
tion was performed by the application of 70% ethanol for
60 seconds, followed by 2% sodium hypochlorite for 90 sec-
onds, and 30 seconds in 100% ethanol; subsequently, the
tissues were washed five times using sterilized water. The
tissues were dried out in sterile conditions, ground by us-
ing a mortar and pestle, and incubated with 6 mL of 0.9%
NaCl for 3 hours at 24°C to allow the total discharge of en-
dophytic bacteria from the host tissue.

The supernatant was diluted 10 times and 100 times
with 0.9% NaCl solution. Each dilution was spread on YNA
media (yeast extract 5 g/L, nutrient broth 8 g/L; Becton,
Dickinson and Company, Sparks, MD, USA) and 1.5% agar
Petri dishes by using a sterilized spreader. Three replicates
of each condition were conducted. Thereafter, the Petri
dishes were incubated for up to 15 days at 28°C to isolate the
endophytic bacteria. The amount of colonies was count
up and expressed as colony forming unit (CFU)/g of tissue.
The morphological properties of the endophytic bacteria
colonies, such as size, color, form, margin, and elevation,
were visualized by using standard methods (28, 29). The
molecular identification of endophytic bacteria isolated
from D. uniformis was achieved by using 16S rRNA gene se-
quencing. The identified sequences were aligned and the
neighbor joining tree was constructed by MEGA6 software
(version 6) using the neighbor-joining method. Bootstrap
tests were performed with 1000 replicates (30, 31).

3.2. Evaluation of Anticandidal Activity of Endophytic Bacteria

3.2.1. Candida Species Used in the Study

Of the Candida species used in this study, C. albicans
(KACC 30062), C. albicans (KACC 30003), C. saitoana (KACC
41238), and C. geochares (KACC 30061) were obtained from
the Korean Agricultural Culture Collection (KACC, Suwon,
South Korea); C. glabrata (KBNO6P00368) was obtained
from Chonbuk National University Hospital.

3.2.2. Anticandidal Assay of Endophytic Bacteria

The primary anticandidal assessment of endophytic
bacteria isolated from the D. uniformis against the five Can-
dida species was conducted. The Candida species were full-
grown in potato dextrose broth (PDB, Becton, Dickinson
and Company, Sparks, MD, USA) for 24 hours at 28°C. The an-
ticandidal effect was evaluated by using a standard proto-
col (19). Ten microliters of an endophytic bacteria culture
grown overnight (OD600 = 1.0) was dropped slowly onto
YNA Petri dishes (Becton, Dickinson and Company, Sparks,
MD, USA), set aside to dry for 10 minutes, and then incu-
bated at 28°C for 24 hours. Next, the patches of endophytic
bacteria were killed by the addition of 1 mL chloroform to
the lids of Petri dishes and retained in an inverted position
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for 10 minutes on a clean bench. The lids were removed,
and the Petri dishes were kept open for 30 minutes on the
clean bench to remove all traces of chloroform. To ensure
the bacteria were completely killed, the Petri dishes on the
clean bench were then treated with UV light for 15 minutes.
A total of 35 µL of freshly grown Candida culture (OD600 =
1.0) was mixed with 10 mL of PDA (0.75% agar) at 55°C and
poured over the killed bacteria patches. After solidifica-
tion, the Petri dishes were incubated at 28°C; subsequently,
after 24 hours, the inhibition zone diameter was measured
by using an electronic digital caliper (M500-182M, Konex,
Tool Parts Company, Republic of Korea). The experiments
were repeated three times.

3.3. Anticandidal Potential of the Solvent Extract

The fractionation of metabolites from the endophytic
bacteria was successively performed by a variety of polar-
ity solvents, including n-hexane, chloroform, ethyl acetate,
and butanol, in accordance with the standard protocol
(32). The endophytic bacteria were grown at 28°C for 4 days
in 200 mL of yeast extract and nutrient broth (YNB, Becton
Dickinson and Company, MD, USA). After incubation for 4
days, the endophytic bacteria cultures were mixed with an
equal volume of n-hexane, sonicated for 10 minutes, and
fractionated overnight. After a separating funnel was used
to collect the n-hexane fraction, an equal volume of chloro-
form was added to the residual solution and fractionated
overnight. The fraction of chloroform was separated and
dried by using a rotary evaporator. The residual culture ex-
isted was assorted with an identical volume of ethyl acetate
and the ethyl acetate fraction was separated and dried out.
Finally, an equal volume of n-butanol was mixed with the
residual culture and the butanol fraction was separated
and dried.

The assessment of the anticandidal activity of the sol-
vent extract of the selected endophytic bacteria was con-
ducted in accordance with the standard disc diffusion pro-
tocol with slight modifications (33). The test pathogenic
Candida species, C. albicans (KACC 30062), was cultured for
24 hours and 35 µL of fresh culture was mixed in 12 mL
of potato dextrose (0.75%) soft agar at 55°C and poured on
yeast extract and nutrient broth (1.5% agar) Petri dishes.
After solidification, sterilized 8 mm paper discs (Advan-
tec, Toyo Roshi Kaisha, Ltd, Japan) were ready by the ad-
dition of 50 µL of the solvent extracts (500 µg/disc) and
Amphotericin B as a reference standard (10 µg/disc). The
paper disc with solvent extract was incubated in the Petri
dishes at 28°C. After 24 hours the inhibition zone diameter
was measured by using a KONEX electronic digital caliper
(M500-182M, Konex, Tool Parts Company, Republic of Ko-
rea).

3.4. Assessment of Minimum Inhibitory Concentration (MIC)
and Minimum Fungicidal Concentration (MFC)

The MIC and MFC of the butanol extract of the one se-
lected endophytic bacteria (Burkholderia sp. UR 1-07) was
evaluated against the pathogenic Candida species C. albi-
cans (KACC 30062) in accordance with the method of Kubo
et al. (34). The lowest applied concentration at which the
butanol extract did not result in any visible growth of C. al-
bicans (KACC 30062) was recorded as the MIC value and the
minimum fungicidal concentration at which the butanol
extract did not result in any growth of C. albicans (KACC
30062) on potato dextrose agar Petri dishes was considered
as MFC; both values were expressed in µg/mL.

3.5. Scanning Electron Microscopy (SEM) Analysis

The consequence of the butanol fraction of the se-
lected endophytic bacteria on the morphology of the test
pathogenic fungus C. albicans (KACC 30062) was analyzed
by using SEM. For the SEM study, sample preparation was
performed in two sets of 2 mL Eppendorf tubes with 890µL
PDB media. Either 100 µL of 5% DMSO (the control) or 100
µL of the MIC of the butanol fraction of the endophytic bac-
teria, Burkholderia sp. UR 1-07, and (the treatment group)
was added to each Eppendorf tube. Fresh Candida species
were grown for 24 hours at 28°C; 10 µL of the fresh cul-
ture was added to both the control and treatment tubes
and incubated at 28°C for 24 hours. After centrifugation
of the control and treatment Eppendorf tubes meant for
10 minutes at 1000 g, the pellets remained were collected
and washed 3 times with 100µL phosphate buffer solution
(0.05 M, pH 7.4).

The bacterial smear was primed by using a wire loop
on a glass slide, flame dried, covered with 200 µL of 2.5 %
glutaraldehyde, and then incubated at room temperature
for 2 hours. The smear was washed for 1 minute with 0.05
M phosphate buffer solution and then washed successively
with 50%, 70%, 80%, 90%, 95%, and 100% ethanol for 20 min-
utes at each concentration. T-butanol (200 µL) was added
to the smear, incubated at room temperature for 2 hours,
and. Next the t-butanol from the smear was discarded;
subsequently, 200 µL of fresh t-butanol was added to the
smear, which was stored until further use at -20°C (35).
Prior to SEM analysis, the specimens were sputter-coated
with platinum by using an ion coater for 120 seconds and
detected by using a scanning electron microscope (S-4100,
Hitachi, Japan).

3.6. Statistical Analysis

All results of this study were expressed as the mean ±
standard deviation (SD). The statistical analyses used were
one-way ANOVA and Duncan’s multiple range tests; a value
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of P < 0.05 was considered to indicate statistical signifi-
cance. For all analyses, Statistical Analysis Software (SAS)
version 9.4 (SAS Inc., Cary, USA) and Molecular Evolution-
ary Genetics Analysis software version 6.06 were used.

4. Results

In the present study, from the leaf and stem/root tis-
sues of D. uniformis 51 endophytic bacteria were isolated.
The isolated endophytic bacteria were identified by using
16S rRNA gene sequencing. Anticandidal screening identi-
fied six promising bacteria; were identified as Burkholde-
ria sp. (UR 1-07), Staphylococcus sp. (WW60), Bacillus sp.
Cryopeg, Paenibacillus sp. (rif200865), S. warneri, and B.
psychrodurans (Table 1 and Figure 1). The endophytic bac-
teria Burkholderia sp. showed clear and strong anticandi-
dal activity against C. albicans (KACC 30062) with the high-
est inhibition zone diameter (47.67 ± 0.47 mm) among
all six promising endophytic bacteria (Table 1). The endo-
phytic bacterium, Staphylococcus sp. WW60, was only ac-
tive against C. albicans (KACC 30062), with an inhibition
zone diameter of 13.53 ± 0.34 mm.

In the current study, the endophytic bacteria Bacillus
sp. Cryopeg showed broad spectrum anticandidal activity
against three Candida species, C. saitoana (KACC 41238), C.
albicans (KACC 30062), and C. albicans (KACC 30003), with
inhibition zone diameters of 9.55 ± 0.28 mm, 21.47 ± 0.18
mm, and 23.42 ± 0.52 mm, respectively (Table 1 and Figure
1).

However, B. psychrodurans also showed broad spec-
trum anticandidal activity against three Candida species
(such as C. albicans KACC 30062, C. albicans KACC 30003,
and C. glabrata KBNO6P00368) with inhibition zone diam-
eters of 19.31 ± 0.02 mm, 23.49 ± 0.22 mm, and 9.29 ±
0.34 mm, respectively (Table 1 and Figure 1). Paenibacillus
sp. and S. warneri both showed strong anticandidal activ-
ity against C. albicans KACC 30062 and C. albicans (KACC
30003) with inhibition zone diameters of 25.52±0.10 mm
and 23.06 ± 0.30 mm, and 23.59 ± 0.67 mm and 22.84 ±
0.08 mm, respectively (Figure 1 and Table 1).

Burkholderia sp., which showed a clear inhibition zone
with the highest value against C. albicans (KACC 30062)
among all six promising endophytic bacteria, was selected
for further extraction by different solvents, including n-
hexane, chloroform, ethyl acetate, as well as n-butanol. The
different solvent extracts existed were verified for the an-
ticandidal activity assay against C. albicans (KACC 30062).
The n-hexane, chloroform, and ethyl acetate extracts did
not show any inhibitory activity against C. albicans (KACC
30062), but the butanol fraction exerted anticandidal ef-
fect against C. albicans (KACC 30062) with an inhibition
zone diameter of 21.89 ± 0.20 mm (Figure 2 and Table 2).

The MIC and MFC values of the butanol extract against C.
albicans (KACC 30062) were 250 µg/mL and 500 µg/mL, re-
spectively (Table 2).

The sequence of the one endophytic bacteria identified
as Burkholderia sp. UR 1-07 (DUS14) showing strong anti-
candidal activity against C. albicans was aligned using 16S
rRNA gene sequencing and the neighbor joining tree was
constructed. The phylogenetic tree of the promising en-
dophytic bacteria DUS14 revealed that this isolate has 99%
similarity with Burkholderia sp. UR 1-07 (Figure 3). Scanning
electron microscopy analysis was conducted to visualize
the treatment effect of the butanol extract administered at
its MIC on the morphology of C. albicans. The SEM analy-
sis results revealed variations in the morphology of tested
pathogenic C. albicans KACC 30062 strain. Compared with
the smooth, regular oval shape and the high density cells
found in the control, the C. albicans treated with butanol
extract had rough cell surfaces with burst cells and low
density cells (Figure 4).

5. Discussion

Candida species are frequently isolated and may be as-
sociated with high mortality in the absence of appropri-
ate treatment (36). Persistent candidiasis is widely docu-
mented as a reason for mortality and morbidity in hospi-
tals and also responsible for the most common nosocomial
bloodstream infection (37-40). The majority of yeast infec-
tion cases are caused by C. albicans (39). Inherent resistance
to antifungal treatment has been observed in a few species,
but is emerging as a prominent problem in the manage-
ment of Candida infections (41). Recently, the incidence
of diseases caused by drug-resistant fungi has increased.
To treat contagious fungal infections Amphotericin B has
been used, but it is acknowledged to have high and poten-
tially dangerous side effects, counting the occurrence of
high fever and trembling anxieties later a hours of infusion
(42).

The general side effects of antifungal drugs include
kidney damage, gastrointestinal discomfort, skin com-
plaints, and hepatotoxicity (43). Hence, there is a neces-
sity to identify novel drugs from diverse natural sources
(44). Mostly, endophytic bacteria produce diverse dy-
namic compounds with special biological activities (45).
To this end, the present study evaluated the anticandidal
effects of endophytic bacteria isolates from D. uniformis
against 5 Candida species, C. albicans (KACC 30062), C. albi-
cans (KACC 30003), C. glabrata (KBNO6P00368), C. saitoana
(KACC 41238), and C. geochares (KACC 30061).

Several researchers have isolated various endophytes
from different parts of plants. Bacterial endophytes
have been documented as storehouse of new secondary
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Table 1. Anticandidal Potential of Endophytic Bacterial Patch Isolated from Dryopteris Uniformis Against Candida Speciesa , b

Endophytic Bacteria C. saitoana (KACC 41238) C. albicans (KACC 30062) C. albicans (KACC 30003) C. glabrata (KBNO6P00368)

Burkholderia sp. UR 1-07 - 47.67 ± 0.47A - -

Staphylococcus sp. WW60 - 13.53 ± 0.27F - -

Bacillus sp. cryopeg 9.55 ± 0.28G 21.47 ± 0.18D 23.42 ± 0.52C -

Paenibacillus sp. rif200865 - 25.52 ± 0.10B 23.06 ± 0.30C -

Staphylococcus warneri - 23.59 ± 0.67C 22.84 ± 0.08C -

Bacillus psychrodurans - 19.31 ± 0.02E 23.49 ± 0.22C 9.29 ± 0.34G

Amphotericin B (reference standard) 0 ± 0 12.61 ± 0.35 10.26 ± 0.41 11.07 ± 0.57

a Diverse superscript letters specify significant differences at P < 0.05.
b Inhibition zone diameters are expressed as the mean ± SD in mm.

Figure 1. Anticandidal potential of endophytic bacteria patches against pathogenic Candida species. A, Burkholderia sp. UR 1-07 (DUS14); B, Staphylococcus sp. WW60 (DUS56); C,
B. sp. cryopeg (DUS59); D, Paenibacillus (DUL128); E, S. warneri (DUS130); F, B. psychrodurans (DUS131) against C. albicans KACC 30062; G, B. sp. cryopeg (DUS59); H, Paenibacillus sp.
(DUL128); I, S. warneri (DUS130); J, (B. psychrodurans (DUS131) against C. albicans KACC 3003; K, B. sp. cryopeg (DUS59) against C. saitoana KACC 41238; L, B. psychrodurans (DUS131)
against C. glabrata KBNO6P00368

Table 2. Anticandidal Potential of the Butanol Fraction of Burkholderia (DUS14)
Against Candida albicans (KACC 30062)

Treatment C. albicans (KACC 30062) MIC (µg/mL) MFC (µg/mL)

BuOH Fr. 21.89 ± 0.20a 250 500

a Inhibition zone diameters are expressed as the mean ± SD in mm.

metabolites for possible remedial use (46-49). According
to Strobel and Daisy (50), the study of endophytes of medic-
inal and widespread fern plants is required as they are an-
ticipated to harbor unique and exciting endophytes with
new bioactive metabolites. The growth of availability of
antifungal compounds from natural products has encour-
aged search for superior efficiency strategies, like using the
antifungal agents from edible medicinal plants (40).

This has directed to the detection of quite a lot of
bioactive composites from bacterial as well as fungal en-
dophytes isolated from medicinal and fern plants (48, 51-
54). Several species in the Bacillus genus are economi-

cally significant for use in the construction of numerous
molecules and additional products for foodstuffs, phar-
maceutical, agricultural, and biological industries (55, 56).
Several Bacillus species are remarkably important owing
to their use in antibiotic construction and ability to in-
duce production of anti-inflammatory cytokine in vitro
(57-59). The use of Bacillus species to produce a wide range
of metabolites having antimicrobial prospective is exten-
sive in the medical and pharmaceutical industries; they
can assist plant growth in adverse conditions and also ca-
pable of controlling many infections in humans, animals,
and plants after applied as an organic control mediator
(60-62).

Paenibacillus sp. are known for their endophytic exis-
tence (14, 63) and have been described as capable plant-
growth promoting bacteria (64). Numerous Paenibacillus-
based products have been patented and commercially es-
tablished. The antagonistic prospective of Paenibacillus
sp. against a wide range of phytopathogenic fungi has
been previously acknowledged (65, 66). As a source of
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Figure 2. Anticandidal potential of selected endophytic bacteria Burkholderia sp. butanol fraction against C. albicans KACC 30062

Figure 3. The phylogenetic relationship of the endophytic bacteria DUS14 based on 16S rRNA gene sequences by the maximum likelihood method was calculated with 1000
bootstrap replicates. The numbers above each node are the confidence levels (%) generated from 1000 bootstrap trees and correspond to the scale bar of branch lengths (0.001)

novel bioactive compounds, Paenibacillus sp. strains have
a huge potential in biotechnology; at present, this poten-
tially has only partially been explored (67). Burkholderia
is a group of metabolically important gram negative bac-
teria (68). Various Burkholderia species are acknowledged
for their metabolic prospective and be able to be used

for biotechnological functions, for instance the biological
management of plant infections (69), nodulation as well
as plant development elevation (70, 71), and bioremedia-
tion (72, 73). Promising application of endophytic bacteria
to the natural control of pathogenic fungi and in the plant
growth improvement was reported in the previous study
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Figure 4. SEM images showing the consequence of the butanol fraction on the morphology of C. albicans KACC 30062 treated with 5% DMSO. A, C. albicans KACC 30062 treated
with butanol fraction of Burkholderia sp. at the MIC

of Zhao et al (64).

Scanning electron microscopy analysis results re-
vealed variations in the morphology of tested pathogenic
C. albicans (KACC 30062) strain with respect to the control
with the smooth, regular oval shape and the high density
cells. These variations in the morphological feathers in
the treated C. albicans (KACC 30062) might arise from the
bioactive compounds extracted from the butanol extract
from the endophytic bacteria that resulted in the destruc-
tion of cell integrity and lysis of the cell wall as evidenced
from earlier findings (21).

5.1. Conclusion

In the present study, we screened a large number of
endophytic bacteria from D. uniformis and confirmed that
six endophytic bacteria displayed promising anticandidal
effects against four Candida species. Two of these bacte-
ria showed strong anticandidal activity against C. saitoana,
C. albicans, and C. glabrata species; three showed strong
anticandidal activity against two C. albicans species. One
of the selected endophytic bacteria, Burkholderia sp. UR
1-07, which showed clear and highest anticandidal activ-
ity against C. albicans (KACC 30062), was used for further
solvent extraction. The butanolic fraction was effective
against C. albicans (KACC 30062). Thus, it was concluded
that endophytic bacteria isolated from D. uniformis may
serve as the potential source of natural anticandidal agents
useful for the inhibition of the Candida species C. saitoana
(KACC 41238), C. albicans (KACC 30062), C. albicans (KACC
30003), and C. glabrata (KBNO6P00368). It may also be a
substitute for artificial fungicides to control candidiasis.
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