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Abstract

Background: The causative primary agent of urinary tract infections (UTI) is uropathogenic Escherichia coli (UPEC); however, com-
mensal Escherichia coli (CEC) has been also implicated in the development of UTI. Due to the recent emergence of virulent and resis-
tant strains, it is necessary to have evidence to demonstrate that UPEC and CEC are isolated from patients with UTI and subsequently
they have the genes to be considered pathogenic.
Objectives: To determine the distribution of resistance and virulence genes in UPEC and CEC strains isolated from the patients with
UTI (hospitalized and ambulatory).
Methods: One hundred seven E. coli strains were genotyped according to Clermont protocol and were subjected to PCR assays in
order to detect resistance and virulence genes. In addition, the antimicrobial test in solid media was performed to determinate the
correlation “pheno/genotype”.
Results: Genotyping analysis showed that group B2 (42.05%) was the most predominant, strains followed by A (27.1%), D (24.29%),
and finally, B1 (6.54%). β-lactams, carbapenems, aminoglycosides, and nitrofurans showed the best activity. The virulence gene fre-
quencies were: fimH (92/85.98%), iutA (68/63.55%), traT (66/61.68%), papC (36/33.64%), and cnf1 (15/14.02%) while resistance genes were:
blaCTX-M(41/38.32%), blaOXA (49/45.79%), and blaSHV (2/1.87%). The associations fimH/blaCTX , fimH/blaOXA, traT/blaCTX , traT/blaOXA, iutA/blaCTX ,
and iutA/blaOXA showed higher incidence while the associations with cnf1 and papC genes were low.
Conclusions: Uropathogenic E. coli has the necessary genetic elements (virulence and resistance) to be considered the main
pathogen causing UTI in the Mexican population. Additionally, to our knowledge, there are no studies in our country demonstrat-
ing that the CEC isolated from the patients with UTI contains genetic elements of virulence and resistance that allow them to be
potentially pathogenic.
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1. Background

Urinary tract infections (UTI) are the most common
bacterial infections worldwide, affecting 150 million peo-
ple every year and can be involved in any structure of the
urinary system such as the urethra, bladder, ureters, and
kidney. They are considered the Major cause of ≈ 10 mil-
lion healthcare visits each year (1). Both genders might

be affected by UTI; however, the female population is the
most susceptible to be infected due to the closeness of
anal and vaginal sites that can result in at least one UTI
episode during their lives (2). The epidemiological data
for 2016 by the Mexican Health Department showed that
the female gender is the main population affected by uri-
nary tract infections (3). These infections caused serious
consequences such as high morbidity in a vulnerable pop-
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ulation, pyelonephritis, renal damage, preterm birth, and
complications by irrational use of antimicrobials (4).

High prevalence, recurrence, and severe health ef-
fects resulted in high costs of treatment; therefore, UTI
is considered a public health problem (5). Escherichia
coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus
faecalis, and Staphylococcus saprophyticus are the main
pathogens causing UTI (6, 7). Moreover, uropathogenic E.
coli (UPEC) has been responsible for more than 85% of UTIs
(8). Uropathogenic E. coli pathogenesis begins with peri-
urethral contamination, followed by urethral colonization
and subsequent bacterial migration to the bladder (1). Sev-
eral virulence factors e.g. pili associated-adhesins, includ-
ing FIC, P, S, type I pili, and PapC have been recognized as re-
ceptors in the bladder epithelium and are involved in the
colonization event (9-17). Also, host cell colonization and
invasion are mediated by the FimH adhesin, localized in
the tip of type I fimbriae, due to its capability to bind to
mannosylated receptors in the bladder epithelium (18).

Moreover, UPEC synthetizes the cytotoxic necrotiz-
ing factor type 1 (CNF1) to increase its capability to
access deeper tissue and to persist in the lower uri-
nary tract (19). In recent years, the effectiveness of
UTI treatment has become difficult due to the emer-
gence of multidrug-resistant pathogens. In fact, the
wide-spectrum β-lactamases (ESBL) are responsible for
multidrug-resistance in a large number of genera and
species of the Enterobacteriaceae family. Uropathogenic E.
coli carries blaSHV and blaTEM genes that are involved in an-
timicrobial resistance and have been mainly reported as
conjugative plasmids (20). Also, blaCTX-M gene encodes an
enzyme that hydrolyzes cefotaxime and ceftazidime, and
its importance in pathogen resistance has been demon-
strated (21). Furthermore, E. coli can produce a carbapen-
emase (encoded in blaOXA gene) allowing bacteria to confer
resistance to carbapenems (22).

2. Objectives

This study was conducted in order to know the genetic
distribution and relation of virulence and antimicrobial
resistance genes in E. coli strain. In other words, the aim
of this work was to identify virulence and resistance genes
in UPEC and CEC isolated from patients with UTI in hospi-
talized and ambulatory patients in Mexico.

3. Methods

3.1. Strains Origin, Identification, and Antimicrobial Resistance
Assay

One hundred seven E. coli strains were isolated from
ambulatory and hospitalized diagnosed patients with UTI
at the “Hospital Juárez de México” (HJM), from April 2016 to

January 2017. Urine samples (obtained in the second urine
streams) were streaked on Mac Conkey agar and were incu-
bated aerobically at 37°C for 24 - 48 hours. Typical colonies
of E. coli were selected and purified on LB agar and were cul-
tured in LB-broth and frozen in glycerol at -70°C. The iden-
tification of strains and the antimicrobial susceptibility
were performed by using BD Phoenix™ automated identi-
fication and susceptibility testing system according to the
manufacturer’s protocols.

Antimicrobial susceptibility was performed for 16 an-
timicrobial agents (according to the microorganism iden-
tified “Gram-negative”), by using amoxicillin/clavulanic
acid (AMC, 20/10 µg), ampicillin (AM, 10 µg), cefoxitin
(FOX, 30 µg), piperacillin/tazobactam (TZP, 100/10 µg), er-
tapenem (ETP, 10 µg), imipenem (IPM, 10 µg), meropenem
(MEM, 10 µg), cefazolin (CZ, 30 µg), cefepime (FEP, 30
µg), cefotaxime (CTX, 30 µg), ceftriaxone (CRO, 30 µg),
amikacin (AN, 30µg), gentamicin (GM, 10µg), levofloxacin
(LVX, 5 µg), nitrofurantoin (FM, 300 µg), and trimetho-
prim/sulfamethoxazole (SXT, 23.75/1.25 µg). Antibiotic re-
sistance was calculated and represented in percentage (%).
Antimicrobial resistance to different antibiotics was con-
firmed using the disk diffusion method on Mueller-Hilton
agar plates according to the guidelines set by “The Clini-
cal and Laboratory Standards Institute (CLSI 100-S21)”. Es-
cherichia coli ATCC 25922 was used as the control.

3.2. Bacterial Phylogenetic Assignment

All the amplification reactions were performed in a
SEEAMP™ PCR system (Seegene Inc. Korea). DNA was ex-
tracted by using the Qiagen Mini kit (Qiagen, Courtaboeuf,
France). PCR reactions were carried out in a total volume
of 20 µL with 200 ng of DNA, 10 pmol of each primers
pair, 10 mM dNTP’s, 1.5 mM MgCl2, 1X PCR Taq buffer,
and 0.25 U of Taq DNA polymerase (Invitrogen). Phylo-
genetic assignment was performed by using the proto-
col described by Clermont et al., with modifications (23,
24). The assignment of the criteria for the E. coli phylo-
genetic analysis was carried out by the amplification of 4
genes (chuA, yjaA, TSPE4.C2, and arpA) corresponding to one
of the four phylogenetic groups (A, B1, B2, and D, respec-
tively). Primers for PCR amplification assays are shown in
Table 1. Specificity of the primers, a bioinformatic anal-
ysis was performed by using MFEprimer-2.0 server avail-
able at http://biocompute.bmi.ac.cn/CZlab/MFEprimer-2.0
(25). PCR multiplex conditions for gene fragments were
performed as follows: 4 minutes at 94°C followed by up to
30 cycles of 94°C for 5 seconds, 59°C for 20 seconds, 72°C
for 1 minutes, and finally, 72°C for 5 minutes. E. coli LMM36-
ULA (chuA+, yjaA+) and LMM32-ULA (TSPE4.C2+) strains were
used as positive controls.
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Table 1. Primers Used in This Study

Gene Category Sequencea Size, bp

Forward Reverse

Phylogenetic assignment

chuA Hemin uptake system 5’-TGCCGCCAGTACCAAAGACA-3’ 5’-GACGAACCAACGGTCAGGAT-3’ 279

yjaA Unknow 5’-TGAAGTGTCAGGAGACGCTG-3’ 5’-ATGGAGAATGCGTTCCTCAAC-3’ 211

TSPE4.C2 Anonymous DNA fragment 5’-GAGTAATGTCGGGGCATTCA-3’ 5’-CGCGCCAACAAAGTATTACG-3’ 152

arpA Ankyrin-like regulatory protein 5’-AACGCTATTCGCCAGCTTGC-3’ 5’-TCTCCCCATACCGTACGCTA-3’ 400

Virulence factors

traT Serum resistance associated 5’-GGTGTGGTGCGATGAGCACAG-3’ 5’-CACGGTTCAGCCATCCCTGAG-3’ 290

fimH Adhesin 5’-TCGAGAACGGATAAGCCGTGG-3’ 5’-GCAGTCACCTGCCCTCCGGTA-3’ 508

iutA Aerobactin siderophore 5’-GGCTGGACATCATGGGAACTGG-3’ 5’-CGTCGGGAACGGGTAGAATCG-3’ 300

papC Pyelonephritis associated pili 5’-ATATCCTTTCTGCAGGGATGCAATA-3’ 5’-GTGGCAGTATGAGTAATGACCGTT-3’ 200

cnf1 Cytotoxic necrotizing factor 1 5’-TCACGGGAATGAACTTATCACCC-3’ 5’-GTGACATGGCAAAATGATTACAGC-3’ 498

Antimicrobial resistance

blaCTX -M

Antimicrobial resistance

5’-GACGATGTCACTGGCTGAGCTTAGC-3’ 5’-AGCCGCCGACGCTAATACA-3’ 499

blaOXA 5’-GGCACCAGATTCAACTTTCAAG-3’ 5’-GACCCCAAGTTTCCTGTAAGTG-3’ 564

blaSHV 5’-GATGAACGCTTTCCCATGATG-3’ 5’-CGCTGTTATCGCTCATGGTAA-3’ 214

aPrimers design was performed according to previous reports (26-30).

3.3. Virulence and Resistance Genes Detection

Virulence genes fimH, traT, cnf1, iutA, and papC were de-
tected by multiplex PCR in a volume of 20 µL with minor
modifications (Table 1). PCR conditions for virulence genes
were: 4 minutes at 94°C followed by up to 30 cycles of 94°C
for 1 minutes, 59°C for 10 seconds, 72°C for 30 seconds, and
finally, 72°C for 5 minutes. Furthermore, antibiotics resis-
tance genes (blaCTX-M , blaOXA, and blaSHV ) were amplified un-
der the following conditions: 4 minutes at 94°C followed
by up to 30 cycles of 94°C for 1 minute, 59°C for 10 seconds,
72°C for 30 seconds, and finally, 72°C for 5 minutes. PCR
products were analyzed by electrophoresis in agarose gels
(2%) for 1 hour at 60 V/cm and visualized with ethidium bro-
mide and documented by using the Image Lab software.
For all agarose gels, the Olerup SSP® DNA Size Marker was
used as a molecular length marker (Sweden).

3.4. Statistical Analyses

χ2 and Fisher tests were carried out to compare the
populations of ambulatory and hospitalized patients pos-
itive to E. coli in urine culture and their relationship with
other variables (gender and origin). For statistical anal-
ysis of distribution related to the virulence and antimi-
crobial resistance genes, the following issues were consid-
ered: Null hypothesis (H0) = independent variable (pres-
ence of detected genes in strains), alternative hypothesis
(H1) = dependent variable (detected genes related to the

strain or type of gene). Considering P > 0.05, the null hy-
pothesis is accepted (significant) and the alternative hy-
pothesis is rejected. As in all cases, the results were greater
than 0.05; therefore, it was concluded that the results were
significantly different at 95% confidence, indicating that
there was no relationship between strains and the pres-
ence of detected genes.

4. Results

4.1. Description of the Study Population

A total of 107 Mexican patients with urinary tract infec-
tion by E. coli were treated from April 2016 to January 2017.
The patients attending at HJM were included after obtain-
ing their written informed consent. The financial support
for the research was provided by the HJM. All patients were
classified by gender and origin (ambulatory and hospital-
ized). The majority of the patients (71/66.35%) were female
patients in comparison to 36 (33.64%) male patients. Age
ranges of the study population were 24 to 56 and 23 to 34
years old for male and female, respectively. The propor-
tions for ambulatory and hospitalized patients per gender
were: 52.11% (n = 37) versus 47.88% (n = 34), and 52.77% (n
= 19) versus 47.22% (n = 17) in female and male patients, re-
spectively. Statistical analysis showed that no significant
differences were found between hospitalized and ambula-
tory patient groups (P > 0.05).
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4.2. Antimicrobial Resistance Assay

Escherichia coli strains showed differences in suscep-
tibility and resistance patterns to the antimicrobials
tested. These results showed that some β-lactams (ce-
foxitin, piperacillin/tazobactam) carbapenems, aminogly-
cosides, and nitrofurans were the antimicrobials with
the best antimicrobial activity against all strains tested.
Penicillins such as amoxicillin/clavulanic acid, and ampi-
cillin, cephalosporins, quinolones, and inhibitors of folate
showed lower inhibitory activity on the tested strains. Re-
sistance patterns for all E. coli strains are shown in Figure
1.

4.3. Bacterial Phylogenetic Assignment

The phylogenetic group B2 (42.05%) was the most pre-
dominant, followed by group A (27.1%), group D (24.29%),
and finally, group B1 (6.54%). No statistically significant dif-
ferences were observed between the phylogenetic groups
identified by the type of the patient (ambulatory and hos-
pitalized). The distribution of the phylogenetic groups of
E. coli strains is shown in Table 2.

Table 2. Phylogenetic Group’s Distribution of Escherichia coli Strains Isolated of Hos-
pitalized and Ambulatory Mexican Patients with Urinary Infectiona

Phylogenetic Group Strains Origin Total

Hospitalized Ambulatory

A 11 (37.93) 18 (62.06) 29 (27.10)

B1 4 (57.14) 3 (42.85) 7 (6.54)

B2 23 (51.11) 22 (48.88) 45 (42.05)

D 13 (50.00) 13 (50.00) 26 (24.29)

Total 51 (47.66) 56 (52.33) 107 (100)

aValues are expressed as No. (%).

4.4. Virulence Genes Distribution by Phylogenetic Group and
Origin

All strains were subjected to a multiplex amplification
by PCR in order to detect virulence and antimicrobial resis-
tance genes. The frequencies of virulence genes identified
in the E. coli strains were: fimH (92/85.98%), iutA (68/63.55%),
traT (66/61.68%), papC (36/33.64%), and cnf1 (15/14.02%) (Fig-
ure 2A and B). Eight strains (7.47%) carrying all virulence
genes were identified; these strains belonged to the phy-
logenetic groups B2 (n = 7) and D (n = 1) (Table 3). The pro-
portion of the detection genes was calculated as the num-
ber of positive E. coli strains between total strains from the
phylogenetic group. The proportion of the identified viru-
lence genes was 1.7 and 1.4 for phylogenetic groups A and B1,
respectively and no statistically significant difference was
found in the virulence gene frequency from strains that be-
longed to these phylogenetic groups (P > 0.5).

In contrast, the highest frequency rates were found in
the phylogenetic groups B2 and D; proportions were 3.5
and 2.4, respectively. Representing two-fold and 2.5 higher
than A (P < 0.05) and B1 (P < 0.001) phylogenetic groups
(for group B2). The proportion of virulence genes from the
phylogenetic group D was 1.7-fold higher than group B1 (P
< 0.05). Significant differences were identified (P < 0.05)
in the majority of genes detected in hospitalized patients;
iutA, traT, and papC in group B1, traT in group B2, and fimH
and cnf1 in group D. Finally, virulence factor fimH presented
significant differences in the ambulatory patients in group
A.

4.5. Antimicrobial Resistance Genes Distribution by Phyloge-
netic Groups

The frequencies of the virulence genes identified in E.
coli strains were: blaCTX-M(41/38.32%), blaOXA (49/45.79%), and
blaSHV (2/1.87%) is shown in Figure 2C. One strain (0.93%) car-
rying all antimicrobial resistance genes was identified; this
strain belonged to the phylogenetic group B2. A summary
of antimicrobial resistance genes distribution by phyloge-
netic groups detected in all strains is shown in Table 3. Pro-
portion of antimicrobial resistance genes was 0.8 and 0.4
for phylogenetic groups A and B1, respectively. The frequen-
cies of antimicrobial resistance genes were 1.3 and 1.0 in the
phylogenetic groups B2 and D, respectively. The frequency
of antimicrobial resistance in the phylogenetic group B2
was 1.3, representing 1.6-fold and 3.2-fold higher than the
phylogenetic groups A (0.8) and B1 (0.4), respectively. Sig-
nificant differences were identified (P <0.05) in the ma-
jority of genes detected in ambulatory patients; blaCTX-M ,
blaOXA, and blaSHV in group A and B2 and blaCTX-Mand blaOXA

in group B1 of hospitalized patients.

4.6. The Relationship Between Virulence and Antimicrobial Re-
sistance Genes in E. coli Strains

The relationship between virulence and antimicrobial
resistance genes was evaluated in all E. coli strains. The
genetic associations: fimH/blaCTX , fimH/blaOXA, traT/blaCTX ,
traT/blaOXA, iutA/blaCTX , and iutA/blaOXA showed higher in-
cidence, while the associations with genes cnf1 and papC
showed lower incidence in the strains evaluated. Finally,
there was no association of the virulence gene cnf1 with
the blaSHV resistance gene. The relationship between viru-
lence and antimicrobial resistance genes in E. coli strains is
shown in Table 4.

5. Discussion

Urinary tract infections are mainly caused by Gram-
negative and facultative anaerobic bacilli such as UPEC (31).
In this work, we reported the detection of the main phy-
logenetic groups of E. coli in the patients (ambulatory and
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Figure 1. Antimicrobial resistance profile of Escherichia coli strains isolated of mexican patients with urinary infection. Antibiotics tested: Amoxicillin/clavulanic acid (AMC),
ampicillin (AM), cefoxitin (FOX), piperacillin/tazobactam (TZP), ertapenem (ETP), imipenem (IPM), meropenem (MEM), cefazolin (CZ), cefepime (FEP), cefotaxime (CTX), ceftri-
axone (CRO), amikacin (AN), gentamicin (GM), levofloxacin (LVX), nitrofurantoin (FM), trimethoprim/sulfamethoxazole (SXT).

Table 3. Virulence and Antimicrobial Resistance Genes Distribution by Phylogenetic Groups and Origin (Hospitalized and Ambulatory) in Escherichia coli Strains Isolated of
Mexican Patients with Urinary Infectiona

Phylogenetic Group E. coli/ Origin Strains, No. Virulence Genes Resistance Genes

fimH iutA traT papC cnf1 blaCTX-M blaOXA blaSHV

A

Ambulatory 18 16 (88.9)b 7 (38.9) 10 (55.6) 0 (0.00) 0 (0.00) 10 (55.6)b 5 (27.8)b 1 (5.6)b

Hospitalized 11 5 (45.5) 4 (36.4) 8 (72.7) 0 (0.00) 0 (0.00) 5 (45.5) 2 (18.2) 0 (0.00)

B1

Ambulatory 3 2 (66.7) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Hospitalized 4 3 (75.0) 2 (50.0)b 2 (50.0)b 1 (25.0)b 0 (0.00) 2 (50.0)b 1 (25.0)b 0 (0.00)

B2

Ambulatory 22 21 (95.5) 18 (81.8) 8 (36.4) 13 (59.1) 7 (31.8) 9 (40.9) 9 (40.9) 0 (0.00)

Hospitalized 23 22 (95.7) 22 (95.7) 20 (87.0)b 17 (73.9) 7 (30.4) 22 (8.7)b 19 (82.6)b 1 (4.3)b

D

Ambulatory 13 12 (92.3) 5 (38.5) 9 (69.2) 3 (23.1) 0 (0.00) 5 (38.5) 6 (46.2) 0 (0.00)

Hospitalized 13 11 (84.6) 10 (76.9)b 9 (69.2) 2 (15.4) 1 (7.7)b 8 (61.5) 7 (53.8) 0 (0.00)

a Values are expressed as No. (%).
b Significant difference between origin strains (ambulatory and hospitalized) (P > 0.05).

hospitalized) with UTI and the presence of virulence and
antimicrobial resistance genes. Data in this work agree
with previous reports that indicate that female gender
is the most susceptible population to develop UTI. The
highest frequency is attributed to this gender due to the
anatomy of the vaginal and anorectal region. It has been
reported that 80% of the UTIs is caused by UPEC that are

different from CEC strains that normally inhabit the gas-
trointestinal tract (32, 33). Phylogenetic analysis of E. coli
strains was divided into four mains groups (A, B1 B2, and
D) (34, 35).

The results suggest that most of UTI in Mexican pop-
ulation were mainly caused by E. coli of the phylogenetic
group B2. Furthermore, ambulatory and hospitalized pa-
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Figure 2. A, electrophoresis of virulence genes (fimH (508 bp) and traT (290 bp)) by duplex PCR of Escherichia coli strains. Lane M: 1 Kb DNA marker; lane 1: Negative control;
lane 2: Positive control; lane 3 - 8: 30, 40, 87, 64, 125 and 192 E. coli strains. B, electrophoresis of virulence genes (iutA (300 bp), papC (200), cnf1 (498 bp)) by triplex PCR of E. coli
strains. Lane M: 1 Kb DNA marker; lane 9: Negative control; lane 10: Positive control; lane 11 - 16: 17, 32, 96, 98, 95, 52 E. coli strains. C, electrophoresis of antibiotic resistance
genes (blaCTX-M (499 bp), blaOXA (564 bp), and blaSHV (214 bp)) by triplex PCR of E. coli strains. Lane M: 1 Kb DNA marker; lane 17: Negative control; lane 18: Positive control; lane 19
- 24: 40, 84, 114, 200, 16, 132 E. coli strains

Table 4. The Relationship Between Virulence and Antimicrobial Resistance Genes in Escherichia coli Strains Isolated of Mexican Patients with Urinary Infectiona

Resistance Genes Virulence Genes

fimH traT cnf1 papC iutA

blaCTX 54 (50.5)b 42 (39.3)b 6 (5.6) 26 (24.3) 61 (57.0)b

blaSHV 2 (1.9) 2 (1.9) 0 (0.0) 1 (0.9) 1 (0.9)

blaOXA 47 (43.9)b 35 (32.7)b 6 (5.6) 27 (25.2) 46 (43.0)b

aValues are expressed as No. (%).
bCorrelation with significant difference (P > 0.05).

tients were infected by E. coli phylogenetic groups A, B1,
B2, or D with the same frequency (regardless of the origin
of the patient). Virulent and resistant strains are mainly
included in the phylogenetic groups B2 and D, whereas
commensal ones belong to group A. In previous reports,
it was indicated that virulent E. coli strains belonged to
B2 and D groups, whereas isolates that belonged to group

A were CEC strains and could acquire genes of virulence
and antimicrobial resistance by horizontal gene transfer;
therefore, they can cause infection (36). Interestingly, we
found virulence genes (fimH, iutA, and traT) in CEC (A and
B1 groups); the high frequency of fimH in the isolates con-
firms the importance of the participation of this gene in
the initial stage of the infection, since this protein recog-
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nizes receptors of the bladder cells; a previous report in-
dicated that mannose-binding type 1 pili, codified in fimH
gene, is an important virulence factor involved in the es-
tablishment of UTI (37).

On the contrary, the IutA protein is the most important
receptor during the infection that contributes to bacte-
rial colonization; this gene had a high frequency detected
in pathogenic strains isolated from hospitalized patients.
The same phenomenon was observed for the traT gene. The
papC and cnf1 genes encoded for a P-fimbriae and cytotoxic
necrotizing factor type 1, respectively; these genes were de-
tected in low frequencies in strains belonging to the phy-
logenetic group A. The absence of virulence genes in CEC
is a typical group characteristic; however, the study of the
strains that presented these genes (papC gene) is interest-
ing to elucidate the reason why they have these genes to
be non-pathogenic strains. The importance of the study of
the papC gene in pathogenic and non-pathogenic isolates
acquires relevance since this gene is associated with adher-
ence; therefore, its detection provides necessary informa-
tion about the capacity of these strains to cause infections
in the high urinary tract (38).

The simultaneous detection of the papC genes, cnf1 in 31
strains, indicate the possible presence of the pathogenic-
ity island IIJ96 (39), since the presence of these genes is
strongly associated with strains that produce UTI cases.
However, it is necessary to perform the detection of the
hlyA gene, which encodes a hemolysin. The frequency of
detection of this genetic binomial in our work was high,
compared to other works previously reported (40-42). Vir-
ulence and resistance genes were more frequent in strains
isolated from hospitalized patients compared to ambula-
tory patients. We hypothesized that in hospitalized pa-
tients, the use of antibiotics in the nosocomial environ-
ment might allow bacteria to resist the transfer of genetic
material between bacteria by conjugation, transformation
or transduction.

Recent work indicates that urine is a rich source of
bacteriophages that could participate in the transfer pro-
cess of DNA (43). Due to the detection of antimicrobial re-
sistance genes in CEC strains, we can speculate that these
strains could have participated as receptors in processes
of genetic material transfer containing resistance or viru-
lence genes. Since E. coli has a broad phylogenetic diversity,
it has a high degree of genome plasticity, with gene losses
and gains, through horizontal transfer of DNA (44). There-
fore, the gain of genes might allow the commensal bacteria
to cause infection due to the acquisition of new genetic ma-
terial. The differences identified in the phenotype of resis-
tance to antibiotics in the tested strains revealed that the
antibiotics of the aminoglycoside and carbapenems fami-
lies could be the drugs of choice for the treatment of UTI
in the population studied, since the strains tested showed

greater sensitivity.
The beta-lactam antibiotics, cephalosporins, nitrofu-

rantoins, and inhibitors of folate metabolism, showed lit-
tle activity against the strains tested. Correlation between
the detection of the bla genes and the phenotype against
the antibiotics tested was observed. The analysis of the re-
lationship between virulence and resistance genes showed
that the blaCTX and blaOXA genes were strongly associated
with the presence of the fimH, traT, and iutA genes. The vir-
ulence/resistance relationship with the blaSHV gene could
not be detected due to the low frequency of this gene in all
the isolates. It is clear that the increased virulence and the
emergence of antibiotic resistance often arise simultane-
ously; however, its genetic connection has been little stud-
ied, thus it is interesting to know the existence of a possible
synergism between these two characteristics in pathogens
of clinical interest. The results presented in the current
work demonstrated the wide diversity in the distribution
of virulence and antibiotic resistance genes between the
UPEC and CEC strains.

5.1. Conclusions

In conclusion, the phylogenetic group, the virulence
factors, and the susceptibility to antibiotics of E. coli caus-
ing UTI infections varied significantly among the Mexican
populations, In this regard, the predominant phylogenetic
groups causing UTI with virulence and resistance proper-
ties were the B2 and D.
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