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Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant microorganism and the predominant
nosocomial pathogen all over the world. The potential benefits of probiotic lactobacilli against pathogenic bacteria have been
shown in many studies.
Objectives: This study aimed to investigate the effect of cell-free culture supernatant (CFS) of probiotic Lactobacillus spp, including
Lactobacillus reuteri, L. plantarum, and L. fermentum, on virulence factor gene expression of MRSA.
Methods: Lactobacilli were cultured in MRS and the cells were harvested by centrifuging at 10,000 × g for 10 min at 4°C. The pellet
was discarded and 1/2 and 1/4 CFS concentrations from Lactobacillus spp were added to the medium (MHB) containing 107 CFU/mL of
the MRSA strain. A quantitative polymerase chain reaction (qPCR) was performed to measure the expression of virulence factors at
the transcriptional level.
Results: The results showed that lactobacilli CFS had no obvious inhibitory effects on the growth of S. aureus. The qPCR assay showed
that the expression levels of sea, sae, agr A, tst, spa, and spi genes reduced at different levels, depending on the concentration of CFS
and the species of lactobacilli so that the maximum significant down-regulation rate was observed in the sea and tst genes (up to
23.5 folds in the presence of 1/2 concentration of L. reuteri CFS after 12 h incubation).
Conclusions: Cell-free culture supernatants of probiotic bacteria can down-regulate the virulence genes. Consequently, toxins and
enzymes are less produced by S. aureus as a food-borne pathogen. Therefore, the presence of CFS in the food probably reduces diar-
rhea and vomiting caused by S. aureus.
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1. Background

Staphylococcus aureus is one of the most frequent
foodborne pathogens causing various infections such as
wound infection, septicemia, meningitis, toxic shock syn-
drome (TSS), and osteomyelitis in humans (1, 2). Staphy-
lococcus aureus produces different toxins and enzymes in-
cluding enterotoxins, DNase, coagulase, lipase, TSST-1 (tst),
and hemolysin involved in the pathogenesis of the dis-
eases (3). The enterotoxins (sea to see and seg to sej) are
heat-resistant (4, 5). These toxins can cause food poison-
ing, staphylococcal gastroenteritis, and diverse autoim-
mune and allergic diseases (6, 7). Staphylococcus aureus
also secretes protein A (spa) and second immunoglobulin-
binding protein (sbi), virulence factors associated with
staphylococcal pneumonia, and hypodermic infection (8,
9). Therefore, the sea, spa, tst, and sbi genes encode impor-

tant virulence factors that are regulated by accessory gene
regulators (agr) and two-component signal transduction
system (sae) in response to environmental stimulating fac-
tors (10-12).

Methicillin-resistant S. aureus (MRSA) like other
multidrug-resistant bacteria is now resistant to many
antimicrobial agents and cause serious infections in
inpatients and outpatients (6, 13). These isolates from hu-
man sources and dairy products are related to foodborne
diseases (e.g., diarrhea) in humans who consume contam-
inated dairy products. Therefore, there is an increasing
need to study alternative agents with maximum efficacy
and minimum side effects (14, 15).

Probiotic bacteria like Lactobacillus species (Lactobacil-
lus reuteri, L. fermentum, and L. plantarum), as a benefi-
cial group of microbiota, play a considerable role in hu-
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man health (16, 17). Lactic acid bacteria (LAB) demonstrate
the inhibitory and therapeutic effects on some intestinal
pathogenic infections, antibiotic-associated gastrointesti-
nal complications, diarrhea, allergies, cancers, and certain
inflammatory and immunomodulatory disorders (18-20).
The supernatant of the LAB culture includes aroma compo-
nents, fatty acids, organic acids, low-molecular-mass com-
pounds, and hydrogen peroxide that can kill pathogens
(21). In recent studies, the effect of the supernatant of
LAB has been probed on the inhibition of the growth of
pathogenic bacteria such as S. aureus and less attention has
been put on the effect of the supernatant on the expression
of virulence factors.

2. Objectives

In this study, we evaluated the effect of the CFS of three
probiotic LAB (L. reuteri, L. fermentum, and L. plantarum) on
the gene expression regulator system (sae and agr A) and
other genes (sea, tst, spa, and sbi) at the transcriptional
level.

3. Methods

3.1. Bacterial Strains and Growth Conditions

The Methicillin-resistant S. aureus (MRSA) strain (ATCC
33591), L. reuteri (ATCC 23272), L. plantarum (ATCC 8014), and
L. fermentum (ATCC 9338) were obtained from the Persian
type culture collection (PTCC). Methicillin-resistant S. au-
reus was cultured in Muller Hinton Broth (MHB) at 37°C un-
til it reached the exponential phase of growth. Lactobacilli
were cultured in MRS (De Man, Rogosa, and Sharpe) broth
at 37°C until they reached the stationary phase of growth.
After a 24-h period, the lactobacilli cells were harvested by
centrifuging at 10,000× g for 10 min at 4°C. The pellet was
discarded and the cell-free supernatants (CFS) were then
adjusted to natural pH (pH = 7) with NaOH (1 N) and ster-
ilized through a 0.22-µm filter. These supernatants were
stored at -20°C for later use.

3.2. Microbial Interactions

The density and the number (CFU/mL) of MRSA in cul-
tures were measured through the use of spectrophotom-
etry at OD600. The 1/2 and 1/4 × CFS of Lactobacilli spp.
were added to the medium (MHB) containing 107 CFU/mL
of MRSA bacteria. After 6 and 12 h of incubation, the bacte-
rial density was quantified at OD600, and then centrifuged
at 12,000 × rpm/10 min at 4°C. The supernatants were
removed and the pellet was used for RNA extraction. A
lactobacilli-free culture of MRSA was used as control at the
logarithmic phase of growth.

3.3. RNA Extraction and cDNA Synthesis

The RNA was extracted using a Rapid Bacterial RNA Iso-
lation Kit (Bio Basic, Inc., Canada) according to the manu-
facturer’s instructions. The total RNA was solved in 30µl of
RNase-free water. To remove all DNA, the purified RNA was
treated with DNase I, RNase-free (Cinna Gene, Iran) after
extraction. The purity of RNA was determined by calculat-
ing A260/A230 and A260/A280 ratios (Denovix, NanoDrop,
USA) and the integrity of total RNA was assessed with 1%
agarose gel (data not shown). The cDNA was synthesized
using a cDNA reverse transcription kit (Pars Tous, Iran).

3.4. Quantitative PCR

The quantitative polymerase chain reaction (qPCR)
was performed using primers described previously (22-24).
Briefly, all PCR assays were accomplished in a total vol-
ume of 20 µL, containing 10 µL of Sybr Green Mix (Takara
Bio®, Japan), 0.1 µM of primers, 5 ng of cDNA, and deion-
ized water. The RT-qPCR amplification was carried out by
the Applied Biosystems 7500 and the Step One Plus Real-
time PCR system (ABI, France). The cycling parameters for
qPCR included an initial denaturation at 95°C for 5 min,
followed by 40 cycles of denaturation at 95°C for 30 s, an-
nealing at 60°C for 30 s, and extension at 72°C for 30 s. We
used LinRegPCR software to calculate the amplification ef-
ficiency of each sample (25). We entered the raw dataset
of RT-qPCR outputs into LinRegPCR version 2017.1 software
(https: //LinRegPCR.HFRC.nl). The performance and effi-
cacy of all primers was evaluated separately on the qPCR
data of samples. The housekeeping gene 16S rRNA was ap-
plied as an internal control. The expression ratio (fold)
and the up-regulation and down-regulation of genes were
calculated using the ∆∆Ct formula. The data were repre-
sented as mean± standard deviation (SD). All experiments
were accomplished independently at least three times. Sta-
tistical analysis was performed using GraphPad Prism ver-
sion 5.00 software (GraphPad software, Inc., CA, USA).

4. Results

While the growth of MRSA in the presence of CFS of
lactobacilli was not inhibited over the six and 12-h periods
of post-treatment, the level of gene expression was signif-
icantly reduced (Table 1) depending on the species of Lac-
tobacillus, the supernatant concentration, and the incuba-
tion time.

4.1. Gene Expression at 6-h Post-Treatment

The attenuation of virulence gene expression of MRSA
was observed at 6-h post-treatment (Figure 1). At this pri-
mary time-point, no significant change was observed in
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Table 1. Growth of Staphylococcus aureus (MRSA) for up to 12 h in the Presence of the
CFS of Various Species of Lactobacillia

Species
Bacterial Growth at OD600

0 hb 6 h 12 h

Staphylococcus aureus (MRSA) 0.41 0.71 ± 0.021 0.986 ± 0.011

+Lactobacillus reuteri (CFS) 0.41 0.67 ± 0.031 0.88 ± 0.042

+L. plantarum (CFS) 0.41 0.656 ± 0.007 0.845 ± 0.012

+L. fermentum (CFS) 0.41 0.63 ± 0.01 0.82 ± 0.026

aValues are expressed as mean ± SD.
bStarting bacterial inoculum.

the expression of any of the study genes (Figure 1A, E, F, B,
and C). By increasing the CFS concentration to 1/2 × CFS,
the ratio of gene expression decreased significantly from
2.18 to 7.98 folds compared to that of the control in the spa,
sea, sae, tst, and agr A genes in the presence of the CFS of
all the three Lactobacilli studied (P < 0.05). The maximum
reduction belonged to the sea gene (7.89 folds) (Figure 1C).
However, by increasing the concentration of L. reuteri and
L. fermentum CFS, there was no significant decrease in the
expression of the sbi and spa genes (Figure 1E and D).

4.2. Gene Expression at 12-h Post-Treatment

The expression levels of the studied genes also de-
creased at 12-h post-treatment. However, they were differ-
ent from the expression levels at 6-h post-treatment (Fig-
ure 2). The expression ratios of the agr A, tst and sea genes
in all types of CFS markedly decreased 12-h post-treatment
in comparison with the control group at a concentration
of 1/2×CFS from 14.3 to 26.6 folds (Figure 2A-C). The signifi-
cant reductions in the expression of the sae gene were also
observed in the presence of L. plantarum and L. reuteri CFS
(Figure 2F). However, by increasing the incubation time, L.
fermentum CFS (1/2 and 1/4) could not significantly affect the
expression ratios of the sae, sbi, and spa genes (Figure 2F
and E). The maximum reduction, up to 23.5 folds, was ob-
served in the tst and sea genes (Figure 2B and C).

5. Discussion

Despite various studies conducted on the virulence
genes of S. aureus aiming to reduce its adverse effects, this
human pathogen is still considered an extremely preva-
lent pathogen worldwide (26, 27). The objective of this
study was to compare the potential effects of CFS from
three different probiotic lactobacilli including L. reuteri, L.
fermentum, and L. plantarum on the expression of some vir-
ulence factor encoding genes of MRSA at different incuba-
tion times and concentrations. Lactobacilli spp. produce a

class of molecules with antimicrobial capacity (28). For ex-
ample, bacteriocins produced by L. fermentum can reduce
adhesion and cytotoxicity properties of MRSA (29). The
CFS of L. salivarius and L. fermentum can inhibit the biofilm
formation of S. aureus (30). The complete inhibition of
Salmonella growth has been shown in the presence of the
CFS from L. johnsonii, L. rhamnosus, L. casei, and L. plantarum
(31, 32). Lactobacillus reuteri, L. plantarum, and L. fermentum
have been extensively investigated for their probiotic ef-
fects on pathogenic bacteria (27, 33-35).

Vahedi-Shahandashti et al. (36) stated that some pro-
biotic lactobacilli culture supernatants had an inhibitory
effect on Serratia marcescens swarming and antibiotic re-
sistanc. Hiawy et al. in Iraq showed that the CFS of L. fer-
mentum has inhibitory effects on the growth rate and ex-
pression reduction of the gene responsible for biofilm for-
mation in MRSA (21). Our results indicated that L. reuteri, L.
fermentum, and L. plantarum reduced the expression of the
tst, sae, and sea genes, as well as the agr quorum-sensing
system, in MRSA without any tangible effects on its growth.
The agr A system is an important global regulatory system
that controls the expression of many genes associated with
secreting proteins and virulence determinants including
protease and collagenase in S. aureus (37, 38). Based on our
results and in parallel with the Li et al.’s (39) investigations,
it is proven that the reduction in the expression of viru-
lence factors is related to the reduction in the agr system.
In fact, the agr A gene is down-regulated at the transcrip-
tional level by CFS. Consequently, it reduces the expression
of the sae, tst, sea, sbi, and spa genes. In parallel with other
similar studies, it seems that the tst gene is regulated by the
sae and agr systems (40).

The results showed that the significant down-
regulation of gene expressions was in the preference
of the 1/2 × CFS concentration while none of the genes
was significantly altered at the low concentration of CFS
(1/4 × CFS). It has been proven that the sub-lethal dosage
of these antimicrobial compounds can reduce the expres-
sion of virulence-associated genes in S. aureus and Vibrio
cholera, without affecting their growth (7, 39, 41-43). These
results reveal that increasing the incubation time causes
a significant reduction in the gene expression so that a
significant reduction in the sbi and spa gene expressions
achieved by increasing the incubation time. In addition,
the CFS of these species of LAB was effective on the level
of gene expression. Our findings showed that the CFS
of L. reuteri and L. plantarum had a more powerful effect
than the CFS of L. fermentum on gene expression. Previous
researches suggested that human probiotic isolates, such
as L. plantarum, inhibited bacterial virulence, inhibited
bacterial virulence, representing a promising alternative
to antibiotic prophylaxis of staphylococcal menstrual
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Figure 1. Relative gene expression ratios of MSRA in the presence of CFS of Lactobacillus spp. after 6-h incubation. A, agr A gene; B, tst gene; C, sea gene; D, spa gene; E, sbi gene;
and F sae gene, at two different concentrations of three different CFS. Data are the average of three independent experiments performed in triplicate and reported as fold ±
SD.

5

0

-5

-10

-15

2

0

-2

-4

-6

2

0

-2

-4

-6

-8

2
1
0
-1
-2
-3
-4

2

0

-2

-4

-6

-8

5

0

-5

-10

Concentration of CFS (m L) Concentration of CFS (m L) Concentration of CFS (m L) 

Concentration of CFS (m L) Concentration of CFS (m L) Concentration of CFS (m L) 

R
el

at
iv

e 
a

gr
 A

 E
xp

re
ss

io
n

 R
at

io
 

(F
o

ld
) 

R
el

at
iv

e 
sp

a
  E

xp
re

ss
io

n
 R

at
io

 
(F

o
ld

) 

R
el

at
iv

e 
sb

i  
Ex

p
re

ss
io

n
 R

at
io

 
(F

o
ld

) 

R
el

at
iv

e 
se

a
 E

xp
re

ss
io

n
 R

at
io

 
(F

o
ld

) 

R
el

at
iv

e 
ts

t 
Ex

p
re

ss
io

n
 R

at
io

 
(F

o
ld

) 

R
el

at
iv

e 
se

a
 E

xp
re

ss
io

n
 R

at
io

 
(F

o
ld

) 

Control

L. p CFC

L. r CFC

L. f CFC

A B C

D E F

0 ¼ ½ 0 ¼ ½ 0 ¼ ½ 0 ¼ ½ 0 ¼ ½ 0 ¼ ½ 0 ¼ ½ 0 ¼ ½ 0 ¼ ½

0 ¼ ½0 ¼ ½0 ¼ ½0 ¼ ½0 ¼ ½0 ¼ ½0 ¼ ½0 ¼ ½0 ¼ ½

Figure 2. Gene expression of MSRA in the presence of CFS of Lactobacillus spp. after 12-h incubation. A, agr A relative expression ratio; B, tst relative expression ratio; C, sea
relative expression ratio; D, spa relative expression ratio; E, sbi relative expression ratio; and F, sae relative expression ratio at two different concentrations of three different
CFS after 12 hours. Data are the average of three independent experiments performed in triplicate and reported as fold ± SD.

TSS and potentially of other S .aureus-mediated diseases
(40, 44). Though the actual physiological function of su-
pernatant compounds is unclear, these compounds may
serve signaling molecules involved in host-bacterial in-
teractions, considering their biological effects in humans

(39, 45).

It is necessary to mention that L. fermentum is not rec-
ognized as a well-known probiotic bacterium. It had an
inhibitory effect on virulence gene expression, depending
on concentration (1/2 more effective than 1/4 CFS concen-
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tration) and incubation time. It seems that a reduction in
gene expression is associated with the pathogenesis and
consequently their supernatant component is due to the
down-regulation of virulence genes. Therefore, the com-
pounds found in CFS can influence the agr, sae, sea, tst, sbi,
and spa genes to reduce expression at the transcription
level.

5.1. Conclusions

Probiotic bacteria and their products in food can in-
hibit the growth and down-regulate virulence gene expres-
sion. Consequently, toxins (enterotoxins) and enzymes are
less produced by S. aureus as a bacterium causing vomiting.
Therefore, the presence of CFS in the food probably reduces
diarrhea and vomiting caused by bacteria.
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