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Abstract

Background: Acinetobacter baumannii is one of the major bacteria causing nosocomial infections. The emergence of multidrug-
resistant (MDR) isolates causes morbidity and mortality and lead to financial burdens for patients and public health systems.
Objectives: Regarding the use of ciprofloxacin and increase of ciprofloxacin resistance, this study was aimed to investigate the role
of the efflux pump and mutations in gyrA and parC genes as the mechanisms of ciprofloxacin-resistance.
Methods: This study was conducted on 55 strains of A. baumannii isolated from the patients hospitalized in Milad Hospital, Tehran.
The isolates were identified by biochemical tests, and their antibiotic susceptibility was assessed by the disc diffusion method. To
investigate the role of the efflux pump, minimum inhibitory concentration (MIC) of ciprofloxacin was determined in the presence
and absence of the carbonyl cyanide m-chlorophenyl hydrazone (CCCP) inhibitor. The PCR was used for amplification of gyrA, and
parC genes and sequencing of its products was carried out to track the mutations.
Results: The highest and lowest antibiotic resistance were observed in ciprofloxacin (100%) and tobramycin (52.7%), respectively.
Moreover, 96% of the A. baumannii isolates exhibited MDR. Five percent of strains showed 4-fold MIC reduction after the use of the
inhibitor and were reported as the strains with high activity efflux pump. In 100% of the isolates, gyrA and parC genes were detected,
and only one mutation was observed in parC and gyrA genes in the studied isolates that altered amino acid type.
Conclusions: Reduction in MIC in the presence of an efflux pump inhibitor confirmed its role in enhancing the resistance to
ciprofloxacin in some isolates. The results of this study also revealed no significant relationship between the ciprofloxacin resistance
of the studied isolates and mutation in the encoding region of parC and gyrA genes. Thus, the significance of other mechanisms,
such as the expression of genes encoding efflux pump proteins, should not be neglected.
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1. Background

Among Acinetobacter species, Acinetobacter baumannii
is the most common human-isolated species (1). These or-
ganisms are widely spread in nature and can be found in
soil, water, and wastewater (2). Acinetobacter baumannii is
the major cause of a wide range of nosocomial infections
such as blood infection, ventilator-related pneumonia, uri-
nary tract infections, and ulcer infections (3, 4). Single
cases of peritonitis, endocarditis, meningitis, osteomyeli-
tis, and arthritis have also been reported regarding A. bau-
mannii-induced infections (5, 6). Some potential virulence
factors of A. baumannii seem to be important for disease,

including outer membrane porins, surface structures, e.g.,
capsule and lipopolysaccharide, enzymes such as phos-
pholipase D, iron acquisition systems, and regulatory pro-
teins (7). Partial treatment and mortalities due to A. bau-
mannii-induced infections are among the major challenges
of the medical communities (1).

Resistance to antibiotics and the emergence of
multidrug-resistant (MDR) isolates are among the impor-
tant causes of failure treatment of A. baumannii infections
(5, 8). Studies showed that more than 80% of A. baumannii
isolates are resistant to aminoglycosides or quinolones,
such as ciprofloxacin and levofloxacin, and currently
carbapenems have been extensively reported (9). How-
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ever, A. baumannii has increasingly become resistant to
these antibiotics and is only susceptible to the polymyxin
antibiotic (10, 11). The main mechanisms for multiple drug
resistant (MDR) of A. baumannii include horizontal gene
transfer, increased expression of β-lactamases, alterations
of membrane permeability, and increased expression of
efflux pumps and genes encoding the target enzymes (12,
13). Bacterial efflux systems collect different compounds,
such as antibiotics, from the cell and exhaust them; hence,
they reduce the accumulation of antibiotics and increase
their minimum inhibitory concentration (MIC) (14, 15).
The bacterial efflux pumps belong to five large families,
among which the Resistance Nodulation Division (RND)
pump is a multidrug and three-component pump that
uses ATP energy for substrate transfer (16, 17).

Inhibitors have been employed to inhibit the efflux
pumps in bacteria; in this regard, carbonyl cyanide 3-
chlorophenyl hydrazone (CCCP) is one of the most impor-
tant inhibitors (15). This inhibitor belongs to the RND fam-
ily and disrupts the function of the efflux pump; hence, it
increases the accumulation of antibiotics within the bac-
terial cell, which in turn increases the drug efficacy (15).
Another mechanism of resistance to ciprofloxacin involves
the mutation in Quinolone Resistance Determining Re-
gions (QRDRs), where target enzymes such as DNA gyrase
and IV topoisomerase are affected (18). A mutation in the
DNA gyrAse enzyme-encoding gene will inhibit the tran-
scription process (18). DNA gyrase is a tetrameric enzyme
with two subunits A and two subunits B encoded by gyrA
and gyrB genes, respectively. They open up the negative
coiling of the DNA. Topoisomerase IV is also a tetrameric
enzyme consisting of two C and two E subunits encoded by
parC and parE genes, respectively. They contribute to sep-
arating a female chromosome in genome replication (19,
20).

2. Objectives

Regarding the significance of ciprofloxacin in treat-
ing A. baumannii-induced infections and determining the
mechanisms of antibiotic resistance, the present study was
designed to investigate the resistance mechanisms such
as the role of the efflux pumps and mutations in gyrA and
ParC genes in the clinically isolated ciprofloxacin-resistant
A. baumannii strains.

3. Methods

3.1. Sampling and Isolation of Acinetobacter baumannii Iso-
lates

This descriptive cross-sectional study was conducted
on A. baumannii strains isolated from the clinical samples

(including the ulcers, blood, and urine) of 230 patients hos-
pitalized in the intensive care unit (ICU) of Milad Hospital
in Tehran, Iran from November 2017 to April 2018. Clini-
cal samples were cultured on blood Agar and MacConkey
agar to isolate A. baumannii strains. After 24 - 48 hours of in-
cubation, they were identified by Gram staining and stan-
dard biochemical tests such as catalase, oxidase, culture in
TSI (Merck, Germany), MRVP (Merck, Germany) and Urea
(Merck, Germany) media and OF, Lysine, and bile esculin
tests as well as growth at 42°C.

3.2. Antibiotic Susceptibility and Determination of MDR Strains

Antibiotic susceptibility of A. baumannii strains was as-
sessed using disk diffusion method according to CLSI 2018.
Antibiotic disks were supplied from Padtan Teb Company
(Iran) containing gentamicin (10 µg), ciprofloxacin (5 µg),
Ticarcillin (75µg), doxycycline (30µg), tobramycin (10µg),
levofloxacin (5µg), imipenem (10µg), and meropenem (10
µg). Bacterial concentration based on 0.5 McFarland stan-
dard was 1.5 × 108 CFU/mL. The results were reported as re-
sistant, intermediate, and susceptible (Table 1). The A. bau-
mannii (ATCC19606) was employed as the quality control
strain. Strains showing resistance to more than 2 antibi-
otic classes were recognized as MDR strains.

3.3. Efflux Pump Activity Assay

The minimum inhibitory concentration (MIC) of
ciprofloxacin was determined by broth micro-dilution
method based on CLSI 2018 in 96-well plates. Ciprofloxacin
powder was dissolved in sterilized deionized water or a
suitable solvent according to the manufacturers’ instruc-
tion. Then, different concentrations (256, 128, 64, 32, 16, 8,
4, 2, 0.5, and 0.25 µg/mL) were prepared. Subsequently,
100 µL of the as-prepared dilutions was added to each
well of the 96-well micro-plate. The concentration of the
microbial suspension was set to 0.5 McFarland, and was
diluted at the ratio of 1/100. Then, 100 µL of the microbial
suspension was also added to each well, and the plates
were incubated at 35°C for 18 - 24 hours. The lowest antibi-
otic concentration showing no growth was determined as
MIC 90 (21).

To investigate the efflux pump activity, CCCP inhibitor
with a final concentration of 25 µg/mL was added to each
Muller Hinton Agar plates containing 0.25 - 256 µg/mL of
ciprofloxacin. Once again, the minimum inhibitory con-
centration of antibiotics was determined after CCCP treat-
ment. The 4-fold reduction in the MIC after the CCCP in-
hibitor application was considered an indicator of severe
efflux pump activity. All the experiments were performed
in 3 replicates. A CCCP-containing and antibiotic-free plate
was applied as the control sample.
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Table 1. Antibiotics and Their Growth Inhibition Zone Based on CLSI 2018

Antibiotic Disk Content (µg) Sensitive (S) Intermediate (I) Resistant (R)

Ciprofloxacin 5 ≥ 21 16 - 20 ≤ 15

Ticarcillin 75 ≥ 20 15 - 19 ≤ 14

Tobramycin 10 ≥ 15 13 - 14 ≤ 12

Levofloxacin 5 ≥ 17 14 - 16 ≤ 13

Doxycycline 30 ≥ 13 10 - 12 ≤ 9

Imipenem 10 ≥ 22 19 - 21 ≤ 18

Gentamycin 10 ≥ 15 13 - 14 ≤ 12

Meropenem 10 ≥ 18 15 - 17 ≤ 14

3.4. Molecular Analysis

3.4.1. Replication of gyrA and parC Genes by PCR

The Gram-negative bacteria extraction kit (Sina-
colon Co., Iran) was employed for DNA extraction of
all A. baumannii isolates. The quality and quantity of
the extracted DNA were evaluated by gel agarose elec-
trophoresis and NanoDrop spectrophotometry method
at two wavelengths of 260 and 280 nm. A 260/280 ratio
of ~ 1.8 is generally accepted as “pure” for DNA. To repli-
cate and assess the frequency of gyrA genes, the specific
primer sequence of gyrA-F (5’-AAATCTGCTCGTGTCGTTGG-
3’) and gyrA-R (5’-GCCATACCTACAGCAATACC-3’) primer
sequences with 349 bp size were applied; while the
ParC-F (5’-AAGCCCGTACAGCGC CGTATT-3’) and ParC-R (5’-
AAAGTTATCTTGCCATTCGCT-3’) primer sequence with 327
bp size were used to replicate (17).

For PCR reaction, a PCR mixture was used that con-
tained 12.5 µL of 2× Master Mix (Sinacolon Co., Iran), in-
cluding 1× PCR buffer, 1.5 mmol/L MgCl2, dNTPs at a con-
centration of 0.15 mmol/L each dNTP, 1.25 U of Taq DNA poly-
merase, 0.5 µL of 0.8 µM of each primer, 1 µL of template
DNA (0.5µg), and sterile distilled water up to 25µL. The PCR
temperature and time schedule involved the initial denat-
uration stage at 94°C for 5 minutes, followed by 55 seconds
of denaturation at 94°C, the annealing phase at 54°C for
55 seconds, 32 cycles of 1-minute expansion stage at 72°C,
and the final extension stage at 72°C for 5 minutes. To eval-
uate the PCR products, the samples were transferred to a
2% agarose gel; they were analyzed after staining in the
Gel Doc apparatus (Vilber Lourmat, France). The positive
control was A. baumannii ATCC 19606. The negative control
contained no template.

3.4.2. Sequencing of PCR Products

To investigate the mutations in nucleotide sequences,
the PCR products of a number of samples with confirmed
ciprofloxacin resistance were purified and diluted in the
proper concentration (1µg/mL). The PCR amplified the pu-
rified sequences with both forward and reverse primers

using BigDye technology by Bioneer Company (Germany).
The sequencing results of PCR products were analyzed
at the NCBI site (https://www.ncbi.nlm.nih.gov) using the
BLAST software (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to
investigate the mutations in nucleotide sequences.

3.5. Statistical Data Analysis

SPSS version 20 (SPSS, Inc., Chicago, IL, USA) was em-
ployed for statistical analysis. Descriptive statistics and
Pearson’s chi-square tests were used to evaluate the corre-
lation between mutation and ciprofloxacin resistance. Sta-
tistical significance was defined as P value of less than 0.05.

4. Results

Fifty-five strains of A. baumannii were identified and
isolated from clinical samples of 230 patients.

4.1. Antibiotic Resistance Pattern of Acinetobacter baumannii
Isolates

The highest antibiotic resistance was observed in
ciprofloxacin (100%), meropenem (96.4%), ticarcillin
(94.6%) and imipenem (94.6%), respectively. Doxycycline
(65.5%), gentamicin (58.2%), and tobramycin (52.7%) in-
dicated the lowest resistance, respectively (Table 2). The
results indicated that 96.36% of the isolates were MDR.

4.2. MIC of Ciprofloxacin

Investigation of ciprofloxacin MIC in A. baumannii
strains indicated that 100% of the samples exhibited high
resistance to this antibiotic (MIC ≥ 16 µg/mL).

4.3. Efflux Pump Activity After Application of CCCP

After employing CCCP inhibitor and determining the
MIC of ciprofloxacin in the presence of this inhibitor, A.
baumannii strains showing at least a 4-fold decrease in
their ciprofloxacin MIC were phenotypically considered
the strains with high efflux pump activity (Table 3). The
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Table 2. Antibiotic Susceptibility and Resistance Patterns of Acinetobacter baumannii
Isolatesa

Antibiotic Resistant (R) Intermediate (I) Susceptible (S)

Ciprofloxacin 100 0 0

Ticarcillin 94.6 1.8 3.6

Tobramycin 52.7 5.5 41.8

Levofloxacin 63.6 20 16.4

Doxycycline 65.5 3.6 30.9

Imipenem 94.6 1.8 3.6

Gentamycin 58.2 3.6 38.2

Meropenem 96.4 0 3.6

aValues are expressed as percentage.

results revealed that, among the ciprofloxacin-resistant
MDR isolates, 3 strains (5%) exhibited a 4-fold decrease in
their ciprofloxacin MIC in the presence of efflux pump in-
hibitor. Therefore, they were defined as the high efflux
pump-active strains, while among 52 strains (26%) did not
have efflux pump activity as they did not show any changes
in their MIC, and 47% isolates showed that their MIC reduc-
tion was less than 4-fold (Figure 1).
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Figure 1. Frequency of high efflux pump activity in ciprofloxacin-resistant Acineto-
bacter baumannii strains after using CCCP is shown

4.4. Molecular Analysis Results

4.4.1. Determining the Frequency of gyrA and parC Genes by PCR
Method

After replication of gyrA and parC genes, the PCR prod-
ucts of all A. baumannii strains were observed in form of
bands with the length of gyrA 349bp and parC 328bp on
the agarose gel (Figure 2). The results indicated that all
of the studied strains that were ciprofloxacin-resistant (55
strains) because they possessed gyrA and parC genes.

4.4.2. Mutation in gyrA and parC Genes

The study of A. baumannii resistant to ciprofloxacin
with MIC ≥ 4µg/mL showed a mutation in parC gene in
the studied samples and this sequence has the number
84 position mutation L > S. Among the sequenced A. bau-
mannii isolates, which were resistant to ciprofloxacin with
MIC ≥ 4 µg/mL considering gyrA gene, only one case had
a mutation with the number 345 position mutation T >
C, but the mutation did not alter the amino acid. There
is no significant relationship between gene mutation and
ciprofloxacin resistance among studied A. baumannii iso-
lates (P > 0.05).

5. Discussion

Acinetobacter baumannii is the third cause of nosoco-
mial pneumonia and ninth cause of blood infection in the
hospitals (21, 22). Following the increase in the use of an-
tibiotics, A. baumannii antibiotic-resistant strains rapidly
transfer the resistance to the susceptible isolates and caus-
ing the occurrence of MDR (23). In 2017, SENTRY Antimi-
crobial Surveillance Program reported the highest num-
ber of MDR strains of A. baumannii in Europe and Latin
America, Asia-Pacific, and North America between 1997 and
2016 (24). Also, high prevalence of MDR A. baumannii has
emerged as a serious problem in healthcare settings in Iran
(25). Previous studies have shown that fluoroquinolones
are one of the first-line therapies for A. baumannii infec-
tions (26). But several studies revealed a considerable in-
crease in ciprofloxacin resistance in Iran (27, 28).

In the present study, among 55 strains of A. bauman-
nii isolated from different clinical samples of patients ad-
mitted in the ICU of Milad Hospital in Tehran, Iran, the
highest antibiotic resistance was related to ciprofloxacin
(100%) and then meropenem and imipenem. The results of
this study also showed that 96.36% of A. baumannii isolates
were resistant to 3 or more classes of antibiotics and men-
tioned as MDR isolates. Nowroozi et al. in 2014 reported
that the resistance of A. baumannii strains to amikacin,
ciprofloxacin, cotrimoxazole, ceftazidime, and ceftriaxone
was equal to 100%, while their resistance to gentamicin and
tetracycline was equal to 86.1%. In addition, 100% of isolates
were recognized as MDR strains (29).

In 2016, Sarhaddi et al. investigated the drug resistance
pattern of carbapenem-resistant A. baumannii strains iso-
lated from the burning department of hospitals in north-
eastern Iran. They concluded that all isolates were resis-
tant to β-lactam antibiotics and ciprofloxacin (30). Nour-
bakhsh et al. in 2018 demonstrated that the antibiotic resis-
tance pattern for A. baumannii isolates from Burn Center of
Isfahan Hospital showed high resistance to ciprofloxacin,
ceftazidime, and tetracycline with a frequency of 82.5%,
75.3%, 72%, respectively (31). The review study of Hamzeh
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Table 3. Ciprofloxacin MIC of Some Strains Before and After Using CCCP Inhibitor and Determination of the Efflux Pump Activity

Strain code Ciprofloxacin MIC (µg/mL) MIC Ciprofloxacin After Using CCCP (µg/mL) MIC Reduction Rate Efflux Pump Activity

1 128 128 - -

2 256 128 2 -

3 64 64 - -

4 256 128 2 -

5 512 128 4 +

9 512 256 2 -

14 128 32 4 +

15 32 16 2 -

16 64 64 - -

18 128 64 2 -

33 512 128 4 +

Figure 2. Gel electrophoresis of PCR products. Lanes 1 - 3: bands for parC gene (327 bp), lanes 5 - 8: bands for ParC gene (349 bp), and lane 4: ladder (50 bp).

et al. on antibiotic-resistant clinical A. baumannii isolates
from Iran during 2012 - 2017, demonstrated that there was a
significant increase in resistance to many antibiotics such
as gentamicin, imipenem, meropenem, piperacillin, ampi-
cillin/sulbactam, ticarcillin, tobramycin, and aztreonam
(32).

Also, in 2019, Sedaghat et al. showed that all A. bauman-
nii isolates from burn patients in Northeast of Iran were
MDR due to considerable resistance to fluoroquinolones
(95%), cephalosporins (93% - 98%), penicillins (97%), car-
bapenems (94% - 95%), and beta-lactamase inhibitors (87%

- 100%) (33). Both intrinsic and acquired mechanisms can
cause resistance in Acinetobacter (34, 35). Resistance to
quinolones can be caused by different ways; one of them
is an alternation in the bacterial efflux pump expression.
Determining ciprofloxacin resistance in A. baumannii iso-
lates was performed both in the presence and in the ab-
sence of efflux pump inhibitors (36, 37). In this study, the
effect of the efflux pump and its role in the development of
the resistance to ciprofloxacin was investigated using the
CCCP inhibitor. It was shown that among 55 ciprofloxacin-
resistant strains, only 3 strains exhibited a 4-fold MIC re-

Jundishapur J Microbiol. 2020; 13(4):e99435. 5

http://jjmicrobiol.com


Honarmand Jahromy S et al.

duction. These strains were reported as strains with a high
phenotypic expression of the efflux pump.

Previous studies have proven the emergence of MDR
by these pumps in Escherichia coli strains (38). Adabi et al.,
in a study conducted in Tehran in 2015, reported that 8%
of Pseudomonas aeruginosa isolates indicated a 4-fold de-
crease in amikacin MIC in the presence of CCCP reflecting
the role of the efflux pumps in the development of drug
resistance in P. aeruginosa isolates (39). The study of Nikasa
et al. in 2013, showed that a 16-fold reduction was observed
in MIC of ciprofloxacin among A. baumannii isolates after
using the CCCP efflux pump inhibitor (40). Ardebili et al.
in 2014 showed that all strains of Acinetobacter are resis-
tant to ciprofloxacin with MIC values ranging from 4 to
128 µg/mL or more. Moreover, the strains’ susceptibility
to ciprofloxacin increased in the presence of CCCP efflux
pump inhibitor such that a 2 - 64-fold decrease was ob-
served in 86.1% of the strains and they mentioned efflux-
based system may play a role in fluoroquinolone resistance
in A. baumannii isolates (41).

In 2018, Abbasi Shaye demonstrated that among forty-
six clinical Acinetobacter isolates collected from 2 teach-
ing hospitals of Mashhad, Iran, 20 A. baumannii isolates
showed a 2-fold or higher reduction in amikacin MIC in
the presence of CCCP (42). In a study by Ardehali et al. in
2019, the results of phenotypic detection of efflux pumps
using CCCP efflux pump inhibitor revealed that 23.07% of
tigecycline-resistant A. baumannii isolates could contain
active efflux pumps. The results of their study indicate that
RND-type efflux pumps appear to play a significant role in
the tigecycline resistance of A. baumannii (43).

Therefore, the results of our study showed that mech-
anisms other than the efflux pumps may be involved in
the resistance to ciprofloxacin. Studies demonstrated that
mutation in the QRDR region and gyrA and parC genes is
another important mechanism related to the resistance
to ciprofloxacin and associated with high resistance to
fluoroquinolones (44). In this study, mutations in gyrA
and parC genes were studied among some ciprofloxacin-
resistant A. baumannii isolates. The presence of gyrA and
parC genes was reported in all of the studied strains. In A.
baumannii isolates, which were resistant to ciprofloxacin
with MIC ≥ 4µg/mL, just a mutation in parC gene (84 po-
sition mutation L > S) was shown that altered amino acid.
Also, one isolate of A. baumannii, which were resistant to
ciprofloxacin with MIC ≥ 4µg/mL showed a mutation in
gyrA gene, (345 position mutatiom T > C), but the muta-
tion did not alter the amino acid. Our results are relatively
similar to Wisplinghoff et al. study in 2003 that among 147
ciprofloxacin-resistant A. baumannii isolates sequenced for
QRDR regions, no mutation leading to resistance was ob-
served, and they suggested that other mechanisms may in-
volve in resistance (45).

In Valentine et al. study, the sequencing results of
ciprofloxacin-resistant A. baumannii strains showed gyrA
gene mutation in all the resistant strains. They declared
that this mutation probably causes fluoroquinolone resis-
tance, such as levofloxacin (46). In Iran, Ardebili et al. in
2015 found that mutation in gyrA and parC genes could
be effective in the A. baumannii resistance to ciprofloxacin.
The nucleotide sequencing results revealed that 45 (90%)
of 50 isolates had amino acid alteration gyrA and parC as
follow: 1 (2.2%) isolate in gyrA, 2 (4.4%) in parC gene and 42
(93.3%) in gyrA and parC concurrently [20]. Warner et al. in
2016 reported the high levels of mutation in the gyrA and
parC genes in ciprofloxacin-resistant A. baumannii strains
(47). In 2014, Fazeli et al. identified gyrA gene in 70 strains
of A. baumannii isolated from the patients admitted to the
ICU of Alzahra Hospital in Isfahan, Iran (48). Khayat et al., in
a study in 2017, showed that all the ciprofloxacin-resistant
Acinetobacter strains had a mutation in gyrA gene, but no
mutation was observed in the parC gene (49). In a study by
Nowroozy et al. in 2014, all A. baumannii strains had MIC ≥
32 µg/mL, but gyrA gene mutation was detected in MIC ≥
4µg/mL and for parC was MIC ≥ 32 µg/mL (27, 29).

5.1. Conclusions

This study showed that there is a high prevalence of A.
baumannii MDR strains; thus, we can conclude that resis-
tance to ciprofloxacin is common in all clinical isolates of
A. baumannii. So due to the crucial role of A. baumannii in
nosocomial infections, particularly in ICUs, it is necessary
to apply appropriate strategies to control the spread of
bacterial resistance. Also, the results of the present study
show the MIC reduction of ciprofloxacin among A. bau-
mannii isolates in the presence of the efflux pump CCCP
inhibitor and 3 isolates have a high phenotypic activity
of efflux pump. In this study, there is no association be-
tween gyrA and parC gene mutation and ciprofloxacin re-
sistance. Therefore, the role of mechanisms other than al-
terations in gyrA and parC to decrease the susceptibility to
quinolones in A. baumannii isolates such as expression of
genes encoding efflux pumps proteins should be consid-
ered. Further studies with a larger number of isolates are
required to clarify the mechanisms associated with resis-
tance of A. baumannii.
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