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Abstract

Background: Arginine metabolism is an important factor involved in tumorigenesis, progression, and survival of tumor cells. Be-
sides, other metabolites produced in the arginine metabolism process, such as polyamines, nitric oxide, argininosuccinate, and
agmatine, play key roles in different stages of tumor development. On the other hand, herbal metabolites are widely used to treat
cancer. One of these herbal flavonoids is quercetin.
Methods: In this study, according to MTT assay data, two concentrations of quercetin flavonoid were selected (57.5 and 115 µM) to
treat human embryonic kidney 293 (HEK293) cells. Then RNA was extracted from the cells and used as a template for cDNA syn-
thesis. Using real-time PCR, the expression of key enzymes involved in arginine metabolism was evaluated, including arginase 2
(Arg2), ornithine carbamoyl transferase (OTC), agmatinase (AGMAT), arginase 1 (Arg1), nitric oxide synthase 1 (nNOS), arginine de-
carboxylase (ADC), ornithine decarboxylase 1 (ODC), ornithine carbamoyl transferase (OCT), spermidine synthase (SRM), spermine
synthase (SMS), argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL). The Student t-test was used to analyze the
data considering a P value of < 0.05 as the significance level.
Results: Our results indicated significant changes in the expression of arginine metabolism enzymes after quercetin exposure,
confirming a role for quercetin plant flavonoid in regulating arginine metabolism in HEK293 cells.
Conclusions: Quercetin could alter the gene expression of the key enzymes involved in arginine metabolism. This was the first
study investigating the effects of quercetin on arginine metabolism in HEK293 cells.
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1. Background

Quercetin (3, 3, 4, 5, 7-pentahydroxy flavone) is a plant
flavonoid that is found in the daily diet of millions of peo-
ple around the world (1, 2). Tea, vegetables, and red wine
are rich in quercetin (3, 4). Quercetin is a free-radical scav-
enger and can temporarily bind to metal ions (5). Also, it
has the ability to cross the blood-brain-barrier (6). Several
studies have shown that quercetin has beneficial effects on
many diseases such as respiratory and cardiac disorders
and viral infections (7-9). In addition, it has been shown
that quercetin can inhibit the growth of cancer cells (10, 11),
as shown in clinical trials (12). Millions of people are suffer-
ing and dying of cancer every year (13). Although quercetin
exhibits prooxidant activity at lower concentrations, its ac-

tivity is reversed to antioxidant at higher concentrations
(14).

Many unnecessary amino acids are essential for the
growth of rapidly dividing tumor cells and to support
and regulate the synthesis of nucleotides, macromolecule
biosynthesis, cellular antioxidant systems, epigenetic
changes, post-translational modifications, and many
other cellular functions (15-18). Arginine is one of the
conditionally essential amino acids for humans, and it
has been shown that cancer cells are deficient in arginine
(19). Also, it has been shown that tumor cells are sensitive
to the absence of arginine, which provides a therapeutic
strategy for eradicating cancer cells (20, 21). Arginine
metabolism is interrelated with urea metabolism, synthe-
sis of polyamines (putrescin, spermine and spermidine),
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as well as pyrimidine and nitric oxide biosynthesis. Be-
sides, arginine metabolism has been associated with the
development of many tumors (22-24). Changes in arginine
metabolism might increase the mutation load of cells and
alter cellular proliferation (25).

Human embryonic kidney 293 (HEK293) is a human cell
line derived from embryonic kidney cells (26). It is used as
a cellular model to study the effects of different substances
on cancer cells (27). This cell line may also be extracted
from the immature neonatal neurons of human kidney
cells (28).

2. Objectives

In this study, we aimed to investigate the gene expres-
sion of a number of key enzymes involved in arginine
metabolism in the HEK293 cells treated with quercetin.

3. Methods

3.1. Cell Culture and Quercetin Treatment

Human embryonic kidney 293 cells were acquired
from the Iranian Biological Research Center, Karaj, Iran,
and stored at 37°C under 5% CO2 and appropriate humid-
ity. These cells were preserved in a medium containing 89%
high-glucose DMEM (Gibco, USA), 10% fetal bovine serum
(FBS) (Gibco, USA), and 1% penicillin 100µg/mL and strepto-
mycin 100 U/mL and cultured in 6-well cell culture plates.
After reaching 70% confluence, the cells were treated with
57.5 and 115µM quercetin (Sigma, USA) for 24 hours. Also, a
set of untreated cells was used as control.

3.2. Cell Viability Assay

Human embryonic kidney 293 cells were cultured in a
96-well plate and incubated for 24, 48, and 72 h in a CO2 in-
cubator before being exposed to different concentrations
of quercetin (320, 160, 80, 40, 20, 10, 5, 2.5 and 1.25 µM).
Then the cells were kept in the CO2 incubator for 24 h. Af-
ter that, MTT reagent (4 - 5 mg/mL in sterile PBS) (Sigma,
USA) was added to the wells, and incubation continued for
another 4 h. Next, dimethyl sulfoxide (DMSO, Sigma, USA)
was added to the wells which were then shaken. Optical
density was read at 580 nm (29).

3.3. RNA Extraction and cDNA Synthesis

After 24 hours of treatment with 57.5 and 115 µM
quercetin, RNA was extracted (blood/cultured cell total
RNA mini kit, Favorgen Biotech) from HEK293 cells. The
quality of extracted RNA was evaluated by a nanodrop
(Nabi, Korea). The extracted RNA was then exposed to
DNase I enzyme (Sinaclon, DNase I. RNase-free), and cDNA
was synthesized (Roje technology, nRT-ROSET Kit).

3.4. Real-time PCR

Complementary DNA was used as a template for gene
expression analysis. Using Oligo 7, IDT (integrated DNA
technologies) and NCBI primer blast software, primers
were designed for the genes of the enzymes involved in
arginine metabolic pathways (Table 1), and the specificity
of the designed primers was also evaluated (Table 1). Glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) and 18s
rRNA genes were considered as internal controls. Quanti-
tative expression of the genes was evaluated by the SYBR
Green method [real QPCR 2x mix (Green), amplicon] (first
cycle: 95°C for 15 minutes followed by 40 cycles: 25 seconds
at 95°C and 60 seconds at 60°C). Gene expression was ana-
lyzed using a real-time PCR instrument (LightCycler® 96
Instrument, Roche).

3.5. Statistical Analysis

Statistical quantitative gene expression analysis of
arginine metabolic enzymes was performed using REST
2009 (Corbett research) and GraphPad Prism 8 software
packages. The Student t-test was used for statistical anal-
ysis, and a P-value of < 0.05 was considered as the signif-
icance level. Regression analysis was used to evaluate the
primers’ efficiency scores.

4. Results

Herbal remedies, medicinal plants, and their ingredi-
ents are among the agents employed to fight cancer. Today,
numerous researchers around the world are investigating
the effects of these plant ingredients on cancer cells (32,
33). One of these plant ingredients is quercetin which is a
flavonoid with proven anticancer properties (34, 35). Argi-
nine is a conditionally essential amino acid for humans;
however, many cancer cells are deficient in arginine. There-
fore, this amino acid becomes essential to these cells (36).
In this research, MTT assay showed that the concentrations
of 2.5 µM to 1.2 mM of quercetin did not exert any toxicity
against HEK293 cells. Therefore, we exposed HEK293 cells
to 57.5 and 115 µM quercetin concentrations and observed
altered gene expression of some of the studied arginine
metabolic enzymes. These cells were treated with these
concentrations of quercetin for 24 hours.

In arginine metabolism, ornithine carbamoyltrans-
ferase converts L-ornithine and carbamoylphosphate into
L-citrulline in mitochondria. This enzyme had no expres-
sion in neither untreated HEK293 cells nor the cells treated
with 57.5 and 115 µM quercetin. Arginase I and II con-
vert L-arginine to L-ornithine. Arginase 1 enzyme is lo-
cated in cytoplasm while arginase 2 is found in mitochon-
dria. Arginase 1 showed no expression in the HEK293 cells
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Table 1. The Primers Used in This Study for Assessing the Gene Expression of Arginine Metabolic Enzymes

Genes Forward Primer Reverse Primer

Glyceraldehyde 3-phosphate dehydrogenase (NM-001256799.3) (30) 5’-CCTGCACCACCAACTGCTTA-3’ 5’-CATGAGTCCTTCCACGATACCA-3’

18s rRNA (31) 5’-GTAACCCGTTGAACCCCATT-3’ 5’-CCATCCAATCGGTAGTAGCG-3’

Peptidylprolyl isomerase A (NM-001300981.2) 5’-GGGTTTATGTGTCAGGGTGGT-3’ 5’-ATGGACAAGATGCCAGGACC-3’

Arginase 1 (NM-000045.4) 5’-CTGAGGGTTGACTGACTGGA-3’ 5’-TCTCAAGCAGACCAGCCTTTC-3’

Arginase 2 (NM-001172.4) 5’-TGATAGGAGCCCCGTTCTCAC-3’ 5’-ACTGGAGAGCCTTTTCATCAAGC-3’

Agmatinase (NM-024758.5) 5’-CCTTCCAGTCCCTCATGGTTG-3’ 5’-GTGATCTCCACCCAAGGTCAG-3’

Arginine decarboxylase (NM-001293562.2) 5’-AGCCTTGGACCTGTACTT-3’ 5’-TCTAGCAGAACCTCCTTCTT-3’

Ornithine carbamoyltransferase (NM-000531.6) 5’-GGCTGTCAGATTTGTACCATCC-3’ 5’-TTGTTCCCATCCCCGATCCAG-3’

Spermidine synthase (NM-003132.3) 5’-ATCCTCGTCTTCCGCAGTAA-3’ 5’-TTGGCGATCATCTCCTGGTA-3’

Spermin synthase (NM-001258423.1) 5’-CCTCACTATGGCAGCAGCA-3’ 5’-GCTCCTGGAAAATGGACTGGA-3’

Nitric oxide synthase 1 (NM-000620.5) 5’-GCAACACCCCTCTCTTGGAC-3’ 5’-CAAAGTTTCTGCTGCGTGCTC-3’

Argininosuccinate lyase (NM-000048.4) 5’-CCACTGGCGTCATCTCTACG-3’ 5’-GAATGGCATCCCTTTGCGG-3’

Argininosuccinate synthase 1 (NM-000050.4) 5’-AGCAGGCACCATCCTTTACC-3’ 5’-CACTTTCCCTTCCACTCGCT-3’

Ornithine decarboxylase 1 (NM-001287188.2) 5’-TTGCGGATTGCCACTGATGAT-3’ 5’-TCAGAGATTGCCTGCACGAAG-3’

treated with 57.5 and 115 µM quercetin compared with the
control group. On the other hand, while arginase 2 ex-
pression did not significantly change in 115 µM quercetin
concentration compared with the control, at 57.5 µM
quercetin concentration, the gene expression of this en-
zyme showed a 2.07-fold increase. Arginine decarboxy-
lase enzyme converts L-arginine into agmatine in mito-
chondria. Although the gene expression of this enzyme in
the HEK293 cells treated with 57.5 µM quercetin was not
significantly different compared with the control group,
at 115 µM concentration, the gene expression of this en-
zyme showed a 0.85-fold increase. The agmatinase en-
zyme, which is expressed in mitochondria, converts ag-
matine into putrescine. The HEK293 cells exposed to 57.5
µM quercetin showed a 1.92-fold increase in the gene ex-
pression of this enzyme while at the 115 µM quercetin con-
centration, a 0.74-fold decrease was seen in agmatinase
gene expression compared to the control group. Nitric ox-
ide synthase 1 catalyzes the conversion of L-arginine into
nitric oxide and L-citrulline in cytoplasm. In quercetin-
treated HEK-293 cells, while the 57.5 µM concentration did
not significantly change the gene expression of this gene
in comparison with the control group, the HEK293 cells
treated with 115 µM quercetin showed a 0.76-fold decrease
compared with the control group. Argininosuccinate syn-
thase 1, a cytoplasmic enzyme, converts L-citrulline into
argininosuccinate. In the HEK293 cells exposed to the 57.5
µM quercetin concentration, the expression of this en-
zyme showed a 0.554-fold decrease; nonetheless, at the 115
µM concentration, there was no significant difference be-
tween treated and untreated groups. Argininosuccinate

lyase, which is also located in cytoplasm, converts argini-
nosuccinate into L-arginine. Although the gene expression
of this enzyme did not show significant changes in treated
and untreated cells at the 57.5µM quercetin concentration,
the expression of this enzyme at the 115 µM quercetin con-
centration showed a 33.513-fold increase. The conversion
of L-ornithine to putrescin is mediated by ornithine decar-
boxylase in cytoplasm. At 57.5 and 115 µM quercetin con-
centrations, the gene expression of this enzyme increased
1.31- and 1.225-fold, respectively. In another enzymatic reac-
tion in cytoplasm, spermidine synthase converts putrescin
to spermidine. In the HEK293 cells treated with 57.5 and
115 µM quercetin, the expression of this enzyme increased
by 2.7- and 2.05-fold, respectively, compared to the control
group. Spermine synthase also catalyzes the conversion
of spermidine to spermine in cytoplasm. In the HEK293
cells treated with 57.5 µM quercetin, the expression of this
enzyme showed a 0.885-fold decrease. However, at the 115
µM concentration, the expression of this enzyme was not
significantly different between quercetin-treated and un-
treated cells (Figure 1).

5. Discussion

Cancer is one of the leading causes of death worldwide,
that affects the lives of millions of people every year (13). A
lot of research is underway to fight with this disease (37-
39). Arginine is one of conditionally essential amino acids
for normal human cells and is involved in the synthesis
of many tumor-inducing metabolites in cancer cells, influ-
encing their proliferation, growth, and metastasis (40, 41).
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Figure 1. Changes in the relative gene expression of arginine metabolic enzymes in the HEK 293 cells treated with 57.5 and 115µM quercetin for 24 hours. The data was analyzed
with the Student t-test considering a P-value of < 0.05 as the significance level. All differences were significant.

Various types of cancer cells may be either arginine depen-
dent or independent (42). Arginine metabolism involves
the conversion of L-arginine to L-ornithine by arginase I
and II enzymes. Arginase I is a cytosolic enzyme in liver
cells. Arginase II; on the other hand, is a mitochondrial
enzyme mostly expressed in non-liver cells (43). Although
arginase I was not expressed in HEK293 cells, the expres-
sion of arginase II significantly increased in the HEK293
cells treated with quercetin at the 57.5 µM concentration.
Arginine metabolism is involved in the production of pu-
trescin, spermine, and spermidine polyamines (44). Three
enzymes including ornithine decarboxylase 1, spermine
synthase, and spermidine synthase catalyze the enzymatic
reactions leading to the production of these polyamines.
Oncogenes and free polyamine content play a significant
role in determining the amount of ornithine decarboxy-
lase 1, spermine synthase, and spermidine synthase pro-
teins (45, 46). In this study, the gene expression of these
enzymes significantly decreased in the HEK293 cells ex-
posed to the 115 µM quercetin concentration compared
to the cells treated with the 57.5 µM concentration of
this flavonoid. This indicates the anti-tumor effects of

quercetin by reducing the synthesis of the catalytic en-
zymes involved in arginine metabolism. On the other
hand, arginine decarboxylase that catalyzes the synthe-
sis of agmatine from L-arginine can reduce the produc-
tion of polyamines by inhibiting ornithine decarboxylase
1 (47). The gene expression of this enzyme showed a sig-
nificant increase in the HEK293 cells treated with 115 µM
quercetin. So, the decreased expression of polyamines ob-
served in this study could be attributed to the action of
an ornithine decarboxylase 1-independent pathway. Previ-
ous studies on various cell lines have shown that quercetin
reduces ornithine decarboxylase (ODC) expression. How-
ever, this study showed that the expression of this enzyme
increased in quercetin-treated HEK 293 cells (48). Also, ni-
tric oxide synthase 1 plays an important role in arginine
metabolism. In human cells, the three enzymes of in-
ducible nitric oxide synthase (iNOS), neuronal nitric ox-
ide synthase (nNOS), and endothelial nitric oxide synthase
(eNOS) are involved in the conversion of L-arginine to ni-
tric oxide and L-citrulline, and each of these enzymes has
its own characteristics (49). In this study, nNOS, which is
expressed in neurons, was upregulated in the HEK 293 cells
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treated with 115µM quercetin. This enzyme can be involved
in carcinogenesis as well (49-51). In another study on rat
models of arterial erectile dysfunction, it was shown that
quercetin treatment had no effect on nNOS expression (52).

Argininosuccinate synthase 1 and argininosuccinate
lyase are two enzymes converting citrulline to arginine.
Argininosuccinate lyase plays a vital role in the growth of
various tumor cells and has been suggested as a therapeu-
tic target for treating cancers (53-55). This enzyme signif-
icantly increased in the HEK 293 cells treated with 115 µM
quercetin. The argininosuccinate synthase 1 enzyme ex-
hibits variable expression in different cancers (42). In this
study, argininosuccinate synthase 1 showed a significant
increase in the HEK 293 cells exposed to 57.5µM quercetin.
Consistent with our findings, the hyperammonemic rats
fed with 50 mg/kg body weight quercetin showed overex-
pressed ASS1, OTC, and ARG (56).

5.1. Conclusion

To the best of our knowledge, this is the first study
investigating arginine metabolic enzymes in the HEK293
cells treated with quercetin. It was shown that quercetin
could change the gene expression of the enzymes involved
in arginine metabolism. The findings of this study suggest
investigating the role of plant flavonoids in future cancer
therapy research.
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