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Abstract

Background: Leishmaniasis is among the most important neglected tropical infections, affecting millions of people worldwide.
Since 1945, chemotherapy has been the primary treatment for leishmaniasis; however, lengthy and costly treatments associated
with various side effects and strains resistant to the conventional therapy have dramatically reduced chemotherapy compounds’
efficacy.
Objectives: The antileishmanial activity of the leaf extract of Xanthium strumarium (Asteraceae) was studied. New insights into its
mechanism of action toward Leishmania major were provided through a metabolomics-based study.
Methods: J774 macrophages were cultured, infected with stationary promastigotes, and treated with different leaf extract concen-
trations for three days. Antileishmanial activity was assayed by the MTT colorimetric method, and cell metabolites were extracted.
1HNMR spectroscopy was applied, and outliers were analyzed using multivariate statistical analysis.
Results: Xanthium strumarium extract (0.15µg/mL) showed the best activity against L. major amastigotes with the infection rate (IR)
and multiplication index (MI) values of 51% and 57%, respectively. The action of X. strumarium extract on amastigotes was comparable
with amphotericin B as the positive control (0.015 µg/mL). According to the obtained P-values, pentanoate and coenzyme A biosyn-
thesis, pentose and glucuronate metabolism, valine, leucine and isoleucine biosynthesis, galactose metabolism, amino sugar and
nucleotide sugar metabolism were the most important metabolic pathways affected by the plant extract in the amastigote stage of
L. major.
Conclusions: Our finding demonstrated that X. strumarium leaf extract could be used for discovering and producing novel leish-
manicidal medicines. Moreover, the affected metabolic pathways observed in this study could be potential candidates for drug
targeting against leishmaniasis.
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1. Background

Leishmaniasis is listed by the World Health Organiza-

tion (WHO) among the most important tropical diseases,

with 350 million people at risk in 89 countries, between

12 and 15 million people infected, and 1.5 to 2 million new

cases each year (1). Leishmaniasis began by obligating the

Leishmania genus’ intracellular parasites and manifested

in three primary clinical forms in humans: Cutaneous

leishmaniasis (CL), mucocutaneous leishmaniasis, and Vis-

ceral leishmaniasis (2).

Leishmania major (L. major) is marked as an etiologic

agent of CL, especially in Pakistan, Iraq, Saudi Arabia, and

Iran (3). In Iran, CL is the most common vector-borne dis-

ease after malaria, with about 20,000 new cases reported

annually (4). For over half a century, chemotherapy based

on pentavalent antimonial has constituted the primary

treatment for CL in most countries. Second-line drugs,

such as amphotericin B, pentamidine isethionate, milte-

fosine, and paromomycin, have also been used to treat

this disease (5). However, these compounds have been un-

dermined by drug resistance, considerable toxicity, vari-
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able efficacy between strains and species, and the required

long-course administration (6). Another major challenge

is co-infection with the human immune/deficiency virus

(HIV) because there is no effective therapy for afflicted pa-

tients (7). For all these reasons, the need to find new active

antileishmanial compounds is urgent. Recently, interest

in medicinal plants in treating these infections has been

growing (8).

Xanthium strumarium (X. strumarium) L. (Asteraceae) is

an herbaceous annual plant widely used in traditional

herbal medicine to treat trypanosomiasis (9), malaria fever

(10), bacterial infections, diabetes, skin pruritus, inflam-

matory diseases like rhinitis and rheumatoid arthritis (11),

and skin sores such as leishmaniasis (12). The biologi-

cal activities of X. strumarium are attributed mainly to the

presence of an essential class of phenolics (especially ter-

penoids) called sesquiterpene lactones (STLs). The pheno-

lics can be grouped according to their carboxylic skeletons

into such active metabolites as xanthatin, xanthinin, and

8-epixanthatin, displaying significant antimicrobial, anti-

fungal, and antitumor activities (13).

Metabolomics is a branch of ‘omics’ research involv-

ing the study of global metabolite profiles in biological sys-

tems under given sets of conditions (14). Metabolomics is

applied as a precise and noninvasive tool in diverse areas,

including disease diagnosis, biomarker discovery, drug de-

velopment, microbiology, and the identification of novel

drug targets (15, 16).

2. Objectives

In the current study, the inhibitory effects of the leaf

extract of X. strumarium on the intracellular stage of L.

major were investigated. Nuclear magnetic resonance

(1HNMR) spectroscopy analysis was used to determine the

metabolome pattern alternations. Besides, we elucidated

any inhibitory effect that the extract may have on the

amastigote’s metabolome profile stage of L. major.

3. Methods

3.1. Plant Material

Xanthium strumarium leaves were collected from Ker-

manshah Province, Iran, during the maturing season (July-

September 2017). A voucher specimen was deposited in

the central herbarium of Tehran University, Tehran, under

voucher specimen number 48241.

3.2. Preparation of Crude Plant Extracts

The dried powdered leaves of X. strumarium (40 g) were

macerated with an ethanol / water mixture (5:1) for three

days at room temperature and then filtered and concen-

trated under reduced pressure at 45°C to afford the light-

green extract. All the extract was mixed with active char-

coal, centrifuged to isolate plant pigments, and kept at -

20°C until required for biological testing and phytochem-

ical screening (17).

3.3. Determination of Total Polyphenol Contents

The extract’s total phenolic content was determined as

per the method of Scherer and Godoy (18) in triplicate. The

total phenolic content was calculated according to a cali-

bration curve.

3.4. Cell Culture

Leishmania major promastigotes (MRHO/IR/75/ER) iso-

lated firstly from infected BALB/c mice were cultured in

RPMI 1640 medium (Invitrogen, Carlsbad, USA) supple-

mented with 10% heat-inactivated fetal bovine serum (FBS),

100µg/mL streptomycin, and 100 U/mL penicillin (all from

Sigma, CA, USA) at 23°C - 26°C in a tissue flask (19).

3.5. Xanthium strumarium Extract Cytotoxicity to Macrophage

BALB/c mice macrophages were maintained in a tissue

flask in RPMI1640 medium supplemented with 10% FBS,

1% penicillin/streptomycin, and 1% L-glutamine. The cy-

totoxicity test was carried out as described by Wang et

al. (20). Briefly, the cell suspension was plated at a den-

sity of 8 × 103 cells/well in a 96-well plate and incubated

overnight at 37°C in 5% CO2. Xanthium strumarium leaf ex-

tract compounds dissolved in dimethyl sulfoxide. The ad-

hered macrophages were incubated in the absence or pres-

ence of various concentrations of X. strumarium extract

(150 to 0.015 µg/mL). Amphotericin B and untreated cells

were used as positive and negative controls, respectively.

The blank contained RPMI medium alone. After 48 h of in-

cubation at 37°C, the viability of cells was determined by

the MTT method. The absorbance was read for each well at

562 nm. Cell viability (%) was calculated at each concentra-

tion using the following formula:

Cell viability = (Average absorbance in duplicate drug

wells - average blank wells)/(Average absorbance control

wells - average blank wells) × 100

Minimal inhibitory concentration (MIC) and the half-

maximal inhibitory concentration (IC50) were calculated

using GraphPad Prism software.
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3.6. Antiamastigotes Assay

BALB/c mice macrophages (5 × 104 cells/well) were

allowed to adhere to a glass coverslip in 12-well plates

for 24 h at 37°C in 5% CO2. Simultaneously, logarithmic-

phase L. major promastigotes were cultured in com-

plete RPMI medium for 5 - 6 days without adding fresh

medium represented as stationary promastigotes. Adher-

ent macrophages were then adjacent to stationary-phase

L. major promastigotes at a parasite/cell ratio of 10:1. Af-

ter 24 h, infected macrophages were treated with different

concentrations of the plant extract. Amphotericin B was

used as the standard. After three days, the coverslips were

washed with PBS, fixed in methanol, and stained with 10%

Giemsa solution. The percentage of infected macrophages

was determined as infection rate (IR), and the survival per-

centage was obtained through multiplication index (MI)

(21).

MI = (No of amastigotes in experimental culture/100

macrophages)/(No of amastigotes in control culture/100

macrophages) × 100

3.7. Sample Preparation for NMR Spectroscopy

Mice macrophages were cultured at 37°C in 5% CO2,

and the adherent macrophages were infected with station-

ary promastigotes at a parasite/cell ratio of 10:1. The in-

fected cultures were incubated for 72 h in RPMI medium

(control group) or treated with IC50 concentrations of the

leaf extract (0.015 g.mL-1 leaf extract/5 × 104 parasites) ob-

tained from the anti-amastigote assay as noted above. The

drug and medium were replenished daily for three days.

Then, the trypsinized cells (8 × 107 amastigotes/vial) were

washed twice with PBS and centrifuged. Chilled 1.8 M per-

chloric acid was added to the cell suspension, vortexed,

and sonicated. The supernatant’s pH was adjusted to 6.8

and kept on ice for 60 min to allow potassium perchlo-

rate precipitation. The supernatant was lyophilized before

NMR spectroscopy (21, 22).

3.8. 1HNMR Experiments

Metabolomics analyses were carried out as previously

described by Sheedy (23). First, lyophilized powder sam-

ples from each group were resuspended in D2O containing

trimethylsilyl propionate (1 mM) as an internal chemical

shift standard (δ = 0 ppm) and imidazole (2 mM) as a pH in-

dicator (δ = 5.50 to 8.80 ppm). Samples were analyzed with

Bruker AV-500 NMR spectrometer operating at 500.13 MHz

at 298 K. 1HNMR spectra were obtained using an excitation

pulse of 10-µs, mixing time of 0.1 s, relaxation delay of 3.0

s, spectral width of 6009.6 Hz, and 3000 transients with

standard 1D NOESY pulse sequence to suppress the residual

water peak (23).

3.9. Data Analysis

1HNMR spectra were preprocessed using custom-

written ProMatab (V.3.3) code in MATLAB (V.7.8.0.347) to

convert a proper format for multivariant analysis. The

spectra were segmented into 0.005-ppm chemical shift

bins, and the spectral areas (4.7 ppm) containing residual

water were excluded. Data normalization and Pareto

scaling were performed before data classification. The

chemometric method applied for the pattern recognition

model was partial least square- discriminate analysis

(PLS-DA), a supervised classification technique frequently

used to identify significant bins between experimental

groups (24). The human metabolome database (HMDB)

and LeishCyc database were used to extract the metabo-

lites corresponding to the spectral bins. MetaboAnalyst

3.0 (www.Metaboanalyst.ca) was also conducted to investi-

gate metabolic pathways. SPSS was used to determine the

P-values.

4. Results

4.1. Total Polyphenol Content

The extract was found to have significant antioxidant

activity with a value of 150 ± 4 µg/mL.

4.2. Cytotoxicity of Extracts of Xanthium strumarium to

Macrophages

The MIC and IC50 values of different concentrations

presented variable cytotoxicity against these cells (Table

1). The X. strumarium stock extract (150 µg/mL) showed

the highest cytotoxicity (96%), while cell cytotoxicity de-

creased with reduction in the stock extract concentration.

However, lower concentrations (0.15 µg/mL) were shown

not to be toxic on the macrophages cell line. Amphotericin

B (150 µg/mL) as the positive control presented cell viabil-

ity similar to the stock fraction. IC50 value was reported as

49%, equal to 0.15 µg/mL.

Jundishapur J Nat Pharm Prod. 2021; 16(3):e106431. 3



Ahmadi M et al.

Table 1. Results of Cytotoxic Activities of Extracts of Xanthium strumarium to Macrophagesa

Concentration, µg/mL Xanthium strumarium, % Positive Control, %

150 (stock) 96 98

1.5 81 72

0.15 51 47

0.018 26 20

Negative control 15 20

aAmphotericin B and untreated cells used as positive and negative controls, respectively.

4.3. In Vitro Activity of Xanthium strumarium Extract Against

Leishmania major Amastigotes

Different concentrations of X. strumarium extract

were tested for their efficacy against amastigotes in

macrophages. Based on the results, a dose-dependent

decrease in MI values can be seen (Table 2). The concen-

tration of 0.15 µg/mL had almost the same MI value as

Amphotericin B (0.15 µg/mL). It was determined that the

concentration of 0.015 µg/mL with an infection rate of

51% and a multiplication index of 57%, and it could be

considered for the final treatment of dense amastigotes

cultures.

4.4. Effect of Xanthium strumarium Leaf Extract on Metabolome

Profile

While Figure 1 depicts control and experimental NMR

spectra’s, Figure 2 shows the score plot of PLS-DA modeling

for the control and experimental groups. Red triangles in-

dicate the control group, and green crosses are related to

the experimental group. The loading plot is also used for

outliers’ separation (Figure 3). Figure 3 indicates that the

amastigote stage has affected metabolites as variable im-

portance in projection (VIP) using PLS-DA analysis.

This plot indicates the relative contribution of

bins/spectral variables to experimental and control

groups’ clustering. Each dot in the figure demonstrates

a bin. The loading [2] axis indicates the bin’s correlation

towards the predictive variation shown in Figure 2. The

loading [1] axis represents the magnitude of the spectral

bins.

Variable important projection (VIP) is the measure-

ment of the variable importance in the PLS-DA model, and

the chemical shifts’ (metabolites) importance based on

their variable score is shown in Figure 4.

The outlier metabolites correlating with the NMR spec-

tra’s chemical shifts were identified by using the HMDB

and LeishCyc reference databases. Also, generic databases,

such as the KEGG pathway’s database and the MetaboAna-

lyst online pathway analysis, were applied to identify the

affected metabolic pathways corresponding to these sepa-

rated outliers (Table 3).

5. Discussion

In recent years, different strategies are employed

in drug research in tropical diseases, of which the

metabolomics-based approach represents a vital niche

(25).

According to the acquired P-values, pantothenate

and coenzyme A biosynthesis, pentose and glucuronate

metabolism, valine, leucine and isoleucine biosynthesis,

galactose metabolism, amino sugar and nucleotide sugar

metabolism are the most vital metabolic pathways af-

fected by the plant extract as an antileishmanial agent.

The present study’s results indicated the alternation of two

metabolites, pantothenic acid and alpha-ketoisovaleric

acid, in the pathway of pentanoate and coenzyme A (CoA)

biosynthesis. Previous studies have revealed that pan-

tothenic acid in trypanosomes plays a vital role in vari-

ous cellular processes, such as the essential precursor for

CoA biosynthesis. Enzymes containing phosphopanteth-

eine prosthetic groups are involved in anabolic reactions

such as fatty acid synthesis. Additionally, CoA is a fun-

damental cofactor for cell growth and is utilized in vari-

ous metabolic reactions (26, 27), and the CoA biosynthe-

sis pathway is used as CoA in different metabolic path-

ways of the amastigote stages. Therefore, it is possible that

the leaf extract of X. strumarium, with a disruption in this

metabolic pathway, results in parasite attenuation, which

is consistent with the current results.

Pentose phosphate pathway (PPP) provides NADPH as

a reductive agent in biosynthetic reactions and is required

for protection against oxidative/nitrosative stress under in

vivo conditions. Previous studies have indicated that re-
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Table 2. Results of Activity of Xanthium strumarium Extract Against Amastigotes of Leishmania majora

Concentration, µg/mL Infection Rate, % Multiplication Rate, %

0.15 13 14

0.075 24 27

0.037 43 37

0.015* 51 57

0.0015 84 95

Negative control 88 100

Positive control 10 11

aAmphotericin B and untreated cells used as positive and negative controls, respectively; and *, inhibitory concentration
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Figure 1. 1HNMR spectra of control and experimental amastigote’s metabolomes. The X axis represents the chemical shift in PPM; Y axis represents the normalized intensity;
the edited region is the removed water peak at 4.7 PPM, and TMS is trimethylsilyl propionate (internal chemical shift standard).

Table 3. Metabolome Pathway Analysis Results

Pathways Metabolites Altered in Pathway Total Metabolites in Pathway Altered Metabolites in Pathway P-Value

Pantothenate and CoA biosynthesis L-Valine; pantothenic acid; alpha
ketoisovaleric Acid

10 3 0.420

Pentose and glucuronate
interconversions

Glucose 1-phosphate; oxoglutaric acid 6 2 0.423

Valine, leucine, and isoleucine
biosynthesis

alpha ketoisovaleric acid; L-valine 6 2 0.423

Galactose metabolism Glucose 1-phosphate; uridine
diphosphate galactose

7 2 0.510

Amino sugar and nucleotide sugar
metabolism

Glucose 1-phosphate; D-mannose;
D-glucosamine 6-phosphate;

N-acetyl-D-glucosamine-6-phosphate;
uridine diphosphate galactose

21 5 0.560
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Figure 2. The score plot of PLS-DA amastigotes phases of Leishmania major1HNMR. Red triangles indicate the control group, and green crosses are related to the experimental
group. One-color dots show the sample available in a group.

verse genetic blocking of the pathways providing NADPH

and a potent uncompetitive inhibitor of the glucose 6-

phosphate dehydrogenase enzyme of PPP in T. brucei re-

sulted in a ~ 10-fold increase in susceptibility to H2O2 stress

and, ultimately, cell death (28). Whitaker et al. (29) showed

that the xylose kinase gene and the genes of xylulose re-

ductase and ribulokinase are directly transmitted to the

parasite through bacterial genes. Leishmania can rebuild

a biochemical pathway that produces ribose 5-phosphate

(ribulose-5P) from ribulose. Ribulose-5P is needed for gly-

colysis and de novo pyrimidine biosynthesis (29). The cur-

rent results have also shown that glucose1-phosphate and
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Figure 3. Loading plot of PLS-DA amastigotes phases of Leishmania major

oxoglutaric acid were altered in this pathway. Therefore,

based on the results of the current and previous studies,

it can be concluded that the extract of X. strumarium dis-

rupts the two specific metabolites in this pathway, thus, in-

terfering with the nucleic acid synthesis required for par-

asite proliferation, the sensitivity to oxidative stress, and

cell metabolism (Krebs cycle) of the intracellular amastig-

otes. Leucine amino acid is efficiently used as the primary

carbon source for de novo sterols biosynthesis (30). The uti-

lization of intact leucine skeletons for sterol biosynthesis

will significantly contribute to the Leishmania parasite’s

metabolic economy.

Studies have shown that antifungal inhibitors of sterol

biosynthesis cause growth retardation and death in sev-

eral Leishmania and Trypanosoma species. Besides, one re-

search has shown that lovastatin blocked promastigote

growth and the incorporation of leucine into sterol biosyn-

thesis (30). In the current investigation, it has been deter-

mined that two metabolites, namely alpha-ketoisovaleric

acid and valine, have been changed in this pathway. The im-

portance and role of these two metabolites have been dis-

cussed previously in this article. These two metabolites are

also useful in the synthesis of acetyl coenzyme A required

for the energetic pathways in the amastigote stage, includ-

ing the Krebs cycle and fatty acid biosynthesis. Based on

the current results, it can be assumed that any disturbance

in this pathway’s metabolites can inhibit parasite growth

by interfering with sterol biosynthesis and cellular energy.

Leishmania parasites synthesize various secreted and

cell-surface glycoconjugates, facilitating their survival and

development within the harsh environments they en-

counter (31, 32). Studies have shown that these phosphogly-

cans (PGs) play essential roles, such as facilitating oxidant

resistance, inhibiting phagolysosomal fusion, and control-

ling the host’s signal transduction, in the infectious cycle

of these protozoan parasites (33). Phosphoglycans are par-
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ticularly rich in galactose (34), and numerous studies have

indicated that deficient mutants in the formation of UDP-

Galf or UDP-Gal transporter present an altered glycocalyx

associated with parasite attenuation (33, 35, 36). Kleczka et

al. (36) revealed that the deletion of β-Galf in phosphogly-

can structures, glycoinositolphospholipids, and lipophos-

phoglycan was associated with the weakening pathogenic-

ity of this parasite. Therefore, it can be assumed that X.

strumarium leaf extract disrupts the galactose metabolism,

impressing glycoconjugate biosynthesis as the cell surface

coat, and finally, causes the attenuation of amastigotes due

to increased susceptibility to host complement and oxida-

tive stress.

In Leishmania, nucleotide sugars contribute to gly-

coconjugate biosynthesis, which plays an essential role

in their survival, infectivity, and virulence (37). Previ-

ous studies have revealed that glycocalyx-deficient L. ma-

jor mutants generated through the deletion of sugar

nucleotides resulted in parasite attenuation. In L. ma-

jor, mutation of the lipophosphoglycan gene is required

to synthesize the LPG core domain, resulting in severe

deficiencies in parasites’ ability to survive inside the

sand-fly vector and to establish infection in mammalian

macrophages (38, 39). In the present research, metabo-

lites of N-acetylglucosamine 6-phosphate, glucose-1 phos-

phate, glucosamine-6 phosphate, mannose, and uridine

diphosphate galactose diphosphate changed into amino

sugar and a nucleotide sugar metabolic pathway. There-

fore, based on the present results, it can be deduced that

the leaf extract of X. strumarium influences these metabo-

lites, disrupting the vital metabolic pathways of the para-

site.
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5.1. Conclusions

It can be concluded that X. strumarium leaf extract

shows significant antileishmanial activity, and the affected

metabolome pattern can be a charming candidate for the

development of new drug targets against leishmaniasis.

Further research is in progress to validate and determine

the potential fractions of this plant’s leaf extract.
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Supplementary material(s) is available here [To read

supplementary materials, please refer to the journal web-

site and open PDF/HTML].
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