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Abstract

Background: Biosurfactants are derived from microbes, plants, and animals. Acinetobacter junii B6 is a lipopeptide biosurfactant
producer previously investigated for its structure, physicochemical, and product aggregation properties.
Objectives: In this study, we investigated and optimized the bioencapsulation of A. junii B6 in calcium alginate hydrogel.
Methods: Acinetobacter junii B6 was encapsulated using calcium alginate hydrogel. The formulation of the hydrogel was optimized
using a full factorial approach. Sodium alginate concentration, calcium chloride concentration, and hardening time were selected
as the main factors, and surface tension was the response measure. A scanning electron microscope (SEM) was used to study the
bead’s morphology.
Results: Scanning electron microscope image showed rounded and smooth beads. The most biosurfactant production and reduced
surface tension (35.98 mN/m) were observed at concentrations of 1% calcium chloride, (1%) sodium alginate, and 15 minutes of
hardening time. Acinetobacter juniiB6 can be encapsulated in alginate hydrogels producing biosurfactant at optimum experimental
design.
Conclusions: This represents a practical method for optimizing the bioencapsulation of A. junii B6 to produce biosurfactants.
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1. Background

Surfactants’ structure consists of both hydrophilic
and hydrophobic moieties that play an important role
in drug delivery and many industries, including oil and
petroleum, soap and detergent, energy generation, food
and beverage, and environmental pollution remediation
(1-5). Biosurfactants are new-age surfactants derived
from plants, animals, and microbes (6, 7). They are
equally diverse in structure and function and are gaining
attention due to their biodegradability, stability in high
salinity, acidity, and temperature, and they have lower
critical micelle concentration (CMC) values than synthetic
surfactants (6, 8, 9). Biosurfactants are divided into four

main types: Glycolipids, lipopeptides, phospholipids, and
polymers. Glycolipids and glycoproteins are produced by
different strains of bacteria (8). The type of lipopeptide
presents a heterogeneous class of biologically active
peptides. Lipopeptides contain hydrocarbon chains
or fatty acids that are hydrophobic and hydrophilic
peptide chains typically produced by various bacteria,
such as members of the Acinetobacter genus (10-12). The
Acinetobacter genus has received more attention because it
is widely used in the petroleum industry (13). Acinetobacter
junii B6 was isolated from an Iran oil drilling site (11, 14).
Investigations of A. junii B6 lipopeptide biosurfactant’s
structure, physicochemical, and aggregation properties
have been carried out, and the CMC was evaluated at about
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300 mg/L (11).

Despite the numerous benefits of biosurfactants to
many industries, the greatest limit to using them in
many manufacturing processes is their high production
cost. One of the efficient techniques to produce
biosurfactants is through bioencapsulation (15, 16).
The bioencapsulation of growing bacterial cells is
attractive because it provides bio-transformational
and biosynthetic abilities to produce diverse valuable
products such as biosurfactants, antibiotics, enzymes,
and organic acids (15, 17-20). Several advantages are
provided by bioencapsulation for the production of
biosurfactants, including the ability to separate cell
mass from bulk liquid for reuse, ensuring continuous
operation over an extended period, and increasing reactor
productivity (15, 17, 19). Various natural and synthetic
polymers have been used in bioencapsulation and drug
delivery (21). The mild gelling, biocompatibility, and
biodegradability of alginate make it popular in the
food and pharmaceutical industries. Alginate has also
been used to microencapsulate therapeutic agents for
prolonged and controlled drug delivery (19, 22, 23). In
addition to being simple, nontoxic, and inexpensive,
entrapment in calcium alginate is also one of the most
suitable methods for bioencapsulation (18). Hydrogels
are a three-dimensional and crosslinked network of
hydrophilic polymers. They can absorb a large amount of
water or biological fluids, which leads to their swelling
while maintaining their 3D structure without dissolving
since calcium alginate hydrogels can be used instead of
calcium alginate beads. Applying the statistical design
of experiments to the immobilization method improves
product yields, further validating the response to the
desired product, which saves time and overall cost. Three
steps of the design expert (randomization, replication,
and blocking) are used to improve the efficiency of
experimentation (24-26).

2. Objectives

The main aim of this study was to optimize the
bioencapsulation of biosurfactant-producing A. junii B6
in calcium alginate hydrogel using the two-level factorial
method and observing the effect of bioencapsulation
in increasing microorganism’s resistance to harsh
conditions and biosurfactant production. Sodium
alginate concentration, calcium chloride concentration,
and hardening time were selected as factors, and surface
tension was the main test design response. Since the
amount of biosurfactant production indicates the
number of encapsulated microorganism cells, the amount

of biosurfactant production was used as an index for
optimization (15).

3. Methods

3.1. Primary Culture of Acinetobacter junii B6

Acinetobacter junii B6 was isolated from an Iranian oil
excavation site and characterized in our previous study
(14). Primary cultures were prepared by transferring from
prolonged-storage vials to a solid mineral salt medium
containing one percent crude oil as the only carbon source
and incubated at 37°C overnight (11).

3.2. Preparation of Bioencapsulation Beads of Acinetobacter
junii B6

Sodium alginate solution and calcium chloride
were prepared under sterile conditions and at different
concentrations. A 1% (v/v) of a microbial suspension (OD600

= 0.8) was gently mixed with sodium alginate solution for
one hour to obtain a homogeneous mixture. The resulting
mixture was removed by a 10 mL sterile syringe with a 23 G
stainless steel needle and sprayed dropwise at a distance
of 5 cm into a stirred calcium chloride solution.

3.3. Surface Tension Measurements

The measurement of surface tension (at room
temperature) was done by plate method according to
Wilhelmy using a tensiometer (krüss® tensiometer k100)
compared to the negative control (culture medium
without bacteria). The device’s surface tension reading
accuracy was measured with absolute ethanol and
distilled water before each reading (14). The beads, after
preparation, are separated and washed and then added
to the culture medium. The measurement of the surface
tension of the supernatant culture medium (1500 rpm, 5
min) after equilibrium was investigated as a measure of
biosurfactant production and the main response of the
experimental design (15).

3.4. Optimization of Bioencapsulation

An experimental design of two factorial methods was
used to identify the most important factors potentially
affecting the bioencapsulation of A. junii B6 and the
production of biosurfactants. The selected factors
were sodium alginate concentration, calcium chloride
concentration, and hardening time. The specified codes
for each factor and its levels are presented in Table 1.
According to the design of the experiment using the
two-factor factorial method, 8 (23) experimental setups
were designed and carried out using Design Expert 7.0.0
software. In subsequent steps, the two-factor interaction
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(2FI) model following the equation below was used
to estimate the mathematical relationship between
variables.

(1)y = β0 +
∑3

i=1
βi Xi +

∑3

i=1
βij

The predicted response is y, the coded levels of the
independent variables are represented as X, β0 is the
model constant, βi is the linear coefficient, and βij is the
cross-product coefficient.

Moreover, to ensure the accuracy of the results, the
center point was repeated three times, and the results were
compared. Analysis of variance (ANOVA) was carried out on
the obtained results.

3.5. Scanning Electron Microscope Analysis

An scanning electron microscope (SEM) was used to
examine the shape of the beads. Calcium alginate beads
were prepared at different concentrations, transferred
to a liquid Mineral salt medium containing 1% oil, and
incubated at 37°C and 150 rpm for 48 h. In a fume
hood at room temperature, beads were dehydrated using
an increasingly graded ethanol series (10, 50, 70, 90,
and 100%). After this period, the shape and stability of
the beads were assessed using field emission scanning
electron microscopy (FE-SEM, MIRA 3 XM, Tescan Inc., USA).
A gold sputter coating was carried out for five minutes after
the samples were dried at room temperature and mounted
on aluminum stubs. An acceleration voltage of 15 kV was
applied to samples (14, 27, 28).

4. Results

The direct method was used for the bioencapsulation
of bacteria. Calcium alginate beads were formed and
encapsulated A. junii B6 as a lipopeptide biosurfactant
producer. In the study of Chan and Zhang this method was
used for the bioencapsulation of Lactobacillus acidophilus
in alginate, and bioencapsulation protected bacteria from
harsh conditions (29).

4.1. Optimization of Bioencapsulation

To determine the effects of the independent variables,
the experimental design was performed according to Table
2. The concentration of calcium chloride and sodium
alginate and the hardening time of beads greatly affected
the production of biosurfactants by A. junii B6. The surface
tension as the response was calculated using the following
equation:

Surface tension = 40.64 + 1.66 (B) + 1.99 (C) - 1.31 (A × B)
-1.89 (A × C) + 2.56 (B × C) + 0.59 (A ×B × C)

A, B, and C are the concentration of sodium alginate
and calcium chloride and the hardening time of beads,
respectively.

The results of the measurement of surface tension
in different conditions were examined by experimental
design software to develop the best conditions that can
describe the observed response. The validity of the
proposed model was measured by the ANOVA test, the
results of which are presented in Table 3.

A, B, and C show the main effects of the independent
variables, including sodium alginate, calcium chloride
concentration, and hardening time, respectively. The
variables AB, AC, and BC indicate the intervening effect of
sodium alginate (factor A) and calcium chloride (factor B)
and hardening time (factor C).

The results show that the P-value for the proposed
model is less than 0.05, and therefore the proposed model
was significant (P-value ≤ 0.0249). Also, the curvature
(P-value ≥ 0.3525) and the lack of fit (P-value ≥ 0.7031) were
non-significant. Another test used to validate the models
was the linear regression test. The regression coefficients
(R2 = 0.96, adjusted regression coefficient = 0.9) and
predictive regression coefficient (0.75) were calculated
and reported in this test. According to the results, the
model has a high precision of 39.38, and the reliability
of the experimental values was remarkable (coefficient of
variation = 3.34%).

Calcium chloride concentration and hardening time
as independent variables were significant (P-value ≤

0.0368, P-value ≤ 0.0231, respectively). The intervening
effect of sodium alginate (factor A) and calcium chloride
(factor B), sodium alginate (factor A) and hardening time
(factor C), and calcium chloride (factor B) and hardening
time (factor C) were also significant (Table 3). Based on
regression, the intervening effect of sodium alginate
and hardening time (AC) has the most positive effect
(coefficient = -1.89) on optimal bioencapsulation (lower
surface tension). Figure 1 shows the fit of the surface
tension (mN/m) values observed during the experiment
(actual) and the surface tension values predicted by the
software model presented.

Figure 2A shows the simultaneous effect of two
variables, calcium chloride and hardening time. Figure
2B shows the simultaneous effect of two variables, the
concentration of calcium chloride and sodium alginate,
on the production of biosurfactants and the reduction of
surface tension by A. junii B6.

Figure 2C show the simultaneous effect of two
variables, sodium alginate and hardening time, on the
surface tension.
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Figure 1. Graph of the observed surface tension (mN/m) values against the values predicted by the software model
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Figure 2. A, three-dimensional graph of the simultaneous effect of calcium chloride and hardening time on the surface tension; B, three-dimensional diagram of the
simultaneous effect of sodium alginate and calcium chloride on the surface tension; C, three-dimensional diagram of the simultaneous effect of sodium alginate and
hardening time on the surface tension
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Table 1. Factors and Levels Used in the Design of a Two-level Factorial to Produce the Maximum Amount of Biosurfactant

Factor Symbol Unit
Level

Low Center High

Alginate concentration A (%w/v) 1 2 3

CaCl2 concentration B (%w/v) 1 2.5 4

Hardening time C (min) 15 20 25

Table 2. Experimental Design and Results of Two Factorial Levels

Run
Value of Independent Factor Surface Tension (mN/m)

A B C Experimental

1 -1 1 1 49.72 ± 0.04

2 1 -1 -1 43.11 ± 0.03

3 -1 -1 -1 35.98 ± 0.03

4 1 1 1 44.08 ± 0.05

5 -1 -1 1 39.81 ± 0.04

6 -1 1 -1 38.09 ± 0.03

7 1 1 -1 37.55 ± 0.06

8 1 -1 1 37.07 ± 0.09

9 0 0 0 38.09 ± 0.02

10 0 0 0 40.08 ± 0.08

11 0 0 0 41.04 ± 0.08

Table 3. Result of Analysis of Variance Test for the Experimental Model

Source Sum of Squares Degree of Freedom Mean Square F-Value P-Value Prob > F

Model 151.29 6 25.21 14.78 0.0249

B 22.11 1 22.11 12.96 0.0368

C 31.60 1 23.60 18.52 0.0231

AB 13.78 1 13.78 8.08 0.0655

AC 28.50 1 28.50 16.71 0.0265

BC 52.53 1 52.53 30.79 0.0115

ABC 2.76 1 2.76 1.62 0.2929

Curvature 2.06 1 2.06 1.21 0.3525

Residual 5.12 3 1.71 - -

Lack of fit 0.45 1 0.45 0.19 0.7031

Pure error 4.67 2 2.33 - -

4.2. Morphology and Stability of Beads

Scanning electron microscope was used to examine
the morphological characteristics of the beads, and the
imaging results are shown in Figure 3. The beads were
round, had a smooth surface, and had no obvious dents.
The shape and stability of the beads were assessed and run
3 (lowest level of calcium chloride (1%), sodium alginate
(1%), and the hardening time of 15 minutes), resulting in

more stable and spherical-shaped beads.

5. Discussion

The results showed that the amount of calcium
chloride and sodium alginate at the lowest level (1%) and
the hardening time at its lowest level (15 minutes) had the
greatest effect on the production of biosurfactants and

Jundishapur J Nat Pharm Prod. 2023; 18(2):e134325. 5
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Figure 3. Scanning electron microscope (SEM) image of prepared beads containing calcium chloride and sodium alginate at (1%) with 15 minutes for the hardening bead (run
3)

reduced surface tension to 35.98 mN/m byA. juniiB6. In the
study by Wu et al. for bioencapsulation of Klebsiellaoxytoca
sodium alginate and calcium chloride were optimally
used and 1.5 - 2.0% and 2.0% concentrations, respectively
(30). The result of this study is in contrast with our
previous study that Pseudomonas aeruginosa encapsulated
in alginate beads which may be because the higher
concentration of sodium alginate solution became highly
viscous. It isn’t easy to pump, so crosslinking and bead
forming are hampered and unstable (31, 32). At a high
concentration of calcium chloride, bioencapsulation
efficacy is decreased. This may be due to pore size
reduction, resulting in diminished substrate penetration
into the beads (16, 33). Also, increasing the concentration
of calcium chloride, sodium alginate, and hardening time
leads to harder beads, therefor decrease in the release rate
of biosurfactant from inside the beads was observed. A
higher coating thickness also decreased the release rate of
encapsulated cells (29). Increasing the hardening time can
also lead to increased cross-linking and reduced cavities,
which may reduce the production of biosurfactants by
reducing cell access to nutrients (34).

5.1. Conclusions

In this study, the production of a biosurfactant by
alginate hydrogel encapsulated A. junii B6 was studied
and optimized by experimental design. This experiment
showed that a biosurfactant produced in bead formulation
containing 1% solution of calcium chloride, 1% sodium
alginate, and 15 minutes of hardening beads had a
maximum surface tension reduction of 35.98 ± 0.03
mN/m. Finally, the practicality of this method and
the possibility of creating a sequential culture system
to produce biosurfactants is of great importance for
potential future production and commercialization.
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