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Abstract

Background: Several pharmacological effects have been attributed to thymol. However, limitations such as low solubility in water,
low bioavailability, and high volatility have limited its use.
Objectives: The present study aimed to prepare and characterize thymol-loaded solid lipid nanoparticles (SLNs) to improve the
efficacy of thymol.
Methods: Thymol-loaded SLNs were characterized by atomic force microscopy (AFM), differential scanning calorimetry (DSC), and
Fourier transformed infrared spectroscopy (FT-IR). Cytotoxicity study and hemolysis assay were also performed.
Results: The in vitro drug release showed a sustained manner. Also, SLNs loaded with thymol showed higher cytotoxicity than free
thymol, and the hemolysis results indicated the blood biocompatibility of SLNs.
Conclusions: As nanocarriers, SLNs can open a new avenue for improving the efficacy of thymol in cancer treatment.
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1. Background

Cancer is one of the main causes of death in the world.
The therapeutic efficacy of conventional chemotherapeu-
tic drugs has decreased due to their systemic side effects
and multidrug resistance (MDR) (1). For this reason, the
request for products containing natural ingredients or de-
rived from natural sources has increased (2). Previous stud-
ies have reported that the regular consumption of natural
products strongly reduces the risk of developing chronic
diseases, including cancer (3).

Thymol (2-isopropyl-5-methylphenol), a bioactive com-
ponent, is abundantly found in the oil of thyme (Thy-
mus vulgaris) (4). It has exhibited extensive biological ac-
tions, including anti-microbial (5), anti-fungal (6), anti-
oxidant (7), anti-inflammatory (8), anti-parasitic (9), and
anti-cancer (10) activity and wound healing properties (8).
It is also considered an interesting ingredient in the food
industry due to its generally recognized as safe (GRAS) sta-
tus (4). Thymol has shown protective effects against can-
cer cells and can be considered a new approach for cancer
treatment in clinical practices (1). However, despite its po-
tential, employing thymol in the food industry and medic-
inal applications is limited owing to poor water solubility
(4), high volatility, low bioavailability, and susceptibility to

oxidation, heat, and light (7, 8).

In this context, nanotechnology can be a promising
approach to improve natural compounds’ physicochemi-
cal properties and efficacy. Various nanocarriers are con-
sidered drug delivery systems to improve cancer ther-
apy, including micelles, polymeric nanoparticles, carbon
nanotubes, liposomes, dendrimers, nanostructured lipid
carriers (NLC), and solid lipid nanoparticles. Solid lipid
nanoparticles (SLNs) are nanocarriers that contain bio-
compatible and physiologically active lipids. They are
widely considered drug delivery systems due to their capa-
bility to encapsulate both lipophilic and hydrophilic drugs
(11, 12), biodegradability, bioavailability, stability (4), sus-
tained release of drugs, non-toxicity (11), flexible surface
functionality (13), prolonged circulation in the body (14),
and suitability for large-scale production (15).

According to the previous reports, SLNs do not dis-
play the restrictions associated with polymeric nanopar-
ticles and liposomes, including sterilization, toxicity, and
long-term stability. Moreover, these carriers show advan-
tages over other drug delivery systems, such as high encap-
sulation efficiency, improved physical stability, sustained
drug release, easy large-scale production, and increased
bioavailability (16-18). It was established that the docetaxel-
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loaded SLNs showed lower IC50 and higher effectiveness
than free docetaxel. Moreover, docetaxel-loaded SLNs in-
duced more apoptosis pathways than free docetaxel in can-
cer cells (19). In vitro cytotoxicity and in vivo antitumor
studies indicated that SLNs could be a promising princi-
ple for doxorubicin delivery and provide a new perspective
for breast cancer treatment (20). It has been reported that
1,3-diacylglycerol (DAG) SLNs can be used as a promising
nanocarrier for loading thymol with high encapsulation
and stability (4).

2. Objectives

Encapsulation of thymol in SLNs may decrease its lim-
itations and improve its efficacy. Therefore, the current
study aimed to prepare and characterize thymol-loaded
SLNs (T-SLNs) and evaluate the cytotoxic activity against
cancer cells.

3. Methods

Stearic acid, thymol, glyceryl monostearate (GMS), and
Tween 80 were obtained from Merck, Germany. Also, 5-
diphenyl tetrazolium bromide (MTT) was purchased from
Sigma Aldrich, Germany. We obtained HT-29 (human col-
orectal adenocarcinoma) cell lines from the Iranian Bio-
logical Resource Center (IBRC) of Iran. Other chemicals
and solvents were of analytical grade and purchased from
Merck, Germany.

3.1. Preparation of Solid Lipid Nanoparticles

Solid lipid nanoparticles were prepared using a mi-
croemulsion method. Briefly, stearic acid (300 mg) and
GMS (100 mg) were heated at 70°C. Then, thymol (10 mg)
was incorporated into the molten lipid. To prepare the
aqueous phase, Tween 80 (300 mg/10 mL) was heated at
70°C. Then, the lipid phase was added dropwise into the
aqueous phase under a homogenizer (Heidolph, Germany)
at 24,000 rpm for 10 min. After homogenization, the ob-
tained suspension was cooled at 4°C for 1 h. After centrifu-
gation of the suspension at 20,000 rpm for 30 min (MPW-
350R, Poland), the pellets were washed three times using
distilled water and then freeze-dried at -50°C (2 Pa) for 24 h
(Operon, Korea). The steps of SLNs preparation are shown
schematically in Figure 1A.

3.2. Determination of Encapsulation Efficacy

An indirect method was utilized to calculate encapsu-
lation efficiency. The concentration of free thymol in the
supernatant was measured using a UV spectrophotometer
(Biochrom WPA Biowave II, England) at 297 nm after cen-
trifugation. Encapsulation efficacy (EE%) was calculated us-
ing Equation 1:

(1)EE% =
Wa −Ws

Ws
× 100

Where Wa is the initial amount of thymol added, and
Ws is the amount of remaining free thymol in the super-
natant of centrifuged samples and determined by a UV
spectrophotometer.

3.3. Particle Size and Morphology Study

The particle size of the sample preparations was ana-
lyzed using a particle sizer (Qudix, ScatterOScope I, Korea)
at 25°C. The surface morphology of SLNs was also deter-
mined by atomic force microscopy (AFM) (Nano Wizard II,
JPK, Germany). Also, SLN samples were diluted with double
distilled water to a 1:100 ratio before each measurement.

3.4. Fourier Transform Infrared Analyses

Fourier transformed infrared (FT-IR) spectra of free thy-
mol and thymol-loaded SLNs were performed by an FT-IR
spectrometer (Vertey 70, Bruker, Germany). Pellets were
prepared by mixing the samples with KBr and scanned
from 500 to 4000 cm-1 at 25°C.

3.5. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) was per-
formed to investigate the interaction between nanocar-
riers and molecules of the drug. Thermal analysis of
thymol and thymol-loaded SLNs was performed using a
differential scanning calorimeter (DSC-1 Mettler Toledo,
Switzerland). The samples (5 mg) were sealed in aluminum
pans and analyzed at a heating rate of 10°C min-1 from 0°C
to 250°C for 30 min.

3.6. In vitro Drug Release

The in vitro release study is a critical test to assess the
drug release rate at different times. For this purpose, 2
mg/mL of thymol-loaded SLNs was taken in a dialysis bag
(MW cutoff of 12 kDa), placed in a beaker containing 10 mL
of ethanol 10% (v/v) at 37°C, and stirred at 100 rpm. At dif-
ferent time intervals, 1 mL of the medium was discharged
for analysis and replaced with an equal volume of fresh
medium. The released amount of thymol was determined
using a UV spectrophotometer. The mechanism of thymol
release from SLNs was also determined according to dif-
ferent mathematical models, including zero-order, first-
order, Weibull, linear Wagner, logarithmic Wagner, Hix-
con, Higuchi, and Korsmeyer-Peppas models.
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Figure 1. A, schematic preparation of thymol-loaded solid lipid nanoparticles (SLNs); B, particle size of SLNs; and C, atomic force microscopy (AFM) images of SLNs

3.7. In-vitro Cytotoxicity Assays
The MTT assay was used to determine the cytotoxicity

of formulations. Cytotoxicity assays measure the ability of
cytotoxic compounds to cause cell damage or cell death.
Briefly, HT-29 cells were seeded at a cell density of 5 × 103

cells/well in 96-well tissue culture plates and incubated
overnight. After 24 h, the medium was removed, and the
cells were treated with different concentrations of free thy-
mol, SLN, and T-SLN at concentrations of 5, 25, 50, 75, and
100 µM for 24 h. Next, 20 µL of MTT solution (5 mg/mL)
was added into each well and incubated further for 4 h.
Then, formazan crystals were dissolved by adding 100 µL
of DMSO and shaken for 20 min. Cellular viability was de-
termined using an ELISA plate reader (BioRad, USA) at 570
nm according to Equation 2:

(2)Cell viability % =

(
Abssample

Abscontrol

)
× 100

Where Abssample and Abscontrol are the absorbance of the
sample and positive control, respectively. According to the
cell viability values, IC50 (inhibitory concentration to pro-
duce 50% cell death) was also determined.

3.8. Hemolysis Assay
The hemolysis test is used to study the degree of RBCs

destruction induced by the nanocarriers. The rat blood

samples were centrifuged at 3,000 rpm for 5 min and
washed thrice with PBS. Then, 100µL of the erythrocyte sus-
pension was added to 900 µL of SLNs at different concen-
trations (0.1, 0.5, and 1 mg/mL) and incubated for 3 h at 37°C.
After incubation, samples were centrifuged at 1,500 rpm
for 10 min. Then, the hemoglobin release rate in the super-
natant was determined using UV spectrometry at 540 nm.
Also, PBS and distilled water were used as negative and pos-
itive controls, respectively. Finally, Equation 3 was used to
calculate the hemolysis percentage.

(3)Hemolysis (%) =

(
As−Anc

Apc−Anc

)
× 100

Where As, Anc, and Apc are the absorbance of the sam-
ple, negative control, and positive control, respectively.

3.9. Statistical Analysis
Each experiment was performed in triplicate, and all

data were presented as mean ± SD. For comparative pur-
poses, one-way ANOVA was employed, and P < 0.05 was as-
sumed statistically significant.

4. Results and Discussion

Essential oil components have several applications in
various fields, from the pharmaceutical to food indus-
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tries (21). Thymol has potential applications, including
anti-microbial, anti-inflammatory, anti-oxidant, and anti-
cancer activity (1, 22-24). However, its practical applications
are restricted due to low stability, high volatility, and low
bioavailability (25). Entrapment of thymol into SLNs can
improve its chemical stability and solubility. According
to the results, EE% of thymol in SLNs was 63%, and the av-
erage size of SLNs was 145 nm (Table 1). According to the
previous study, stearic acid is used to prepare SLNs, as it
increases the highest entrapment efficiency in nanocarri-
ers. Therefore, in this study, it was chosen as a lipid core
for SLNs preparation (26). The size distribution of SLNs is
shown in Figure 1B. The intracellular uptake of nanoparti-
cles depends on their size and shape. Nanoparticles with
a 120 - 150 nm size are mostly internalized through cave-
olin or clathrin-mediated endocytosis (27). Encapsulation
of drugs in 100 - 150 nm nanoparticles may improve drug
penetration to tumor tissue due to enhanced permeabil-
ity and retention (EPR) effect (28). In the current study, the
average size of particles was about 145 nm, allowing parti-
cles to place inside tumor cells. As shown in Figure 1C, AFM
images confirm the spherical shape of SLNs. It has been re-
ported that the therapeutic efficiency of spherical nanocar-
riers is much higher due to their ability to encounter mini-
mum membrane bending energy during endocytosis (29).

Table 1. Characteristics of Thymol-loaded Solid Lipid Nanoparticles

Formulation EE% Particle Size (nm)

Th-loaded SLNs 63 145

Abbreviation: SLNs, solid lipid nanoparticles.

4.1. Fourier Transform Infrared Analyses

The FTIR spectra of thymol and thymol-loaded SLNs are
shown in Figure 2. A broad band in the range of 3000 - 3500
cm-1 was shown in the thymol spectrum due to -OH group
(Figure 2A). This peak in thymol-loaded SLNs confirms the
loading of thymol in SLNs (Figure 2B). Similar findings re-
ported by Zamani et al. showed that hydrogen bonding in-
duced phenolic hydroxyl stretching, which, in turn, led to
the formation of a bond in the 3229 cm-1 region of the thy-
mol spectrum (30).

4.2. Differential Scanning Calorimetry Analysis

Differential scanning calorimetry investigated the
thermal behavior of thymol and thymol-incorporated
SLNs. The DSC thermograph of thymol displayed an en-
dothermic peak at 52°C that corresponds with the thymol
endotherm reported in the literature (Figure 3A) (31). As
shown in Figure 3B, the thymol peak in SLNs indicates
the physical encapsulation of thymol in nanoparticles.
Similar results were reported by Zamani et al. for DSC
analysis of thymol loaded within microparticles (30).

4.3. In vitro Release Study

According to the findings, free thymol was rapidly re-
leased within four hours. As shown in Figure 4, a primary
rapid release of thymol from SLNs occurred due to the drug
adsorption on SLNs surfaces. Then, a sustained release be-
havior was observed because of the gradual release of thy-
mol from particles into the diffusion medium. In addi-
tion, the in vitro release profile of thymol from SLNs was
fitted to zero-order, first-order, Hixson, Korsmeyer-Peppas,
Higuchi, linear Wagner, logarithmic Wagner, and Weibull
models (Table 2). As shown in Table 1, the Weibull model
was found to be the best-described thymol release pattern
from SLNs at the first five hours due to the highest R-square
value and least mean percentage error (MPE%). The Weibull
model describes a release mechanism by which the drug
release rate is affected by diffusion, dissolution, and mixed
dissolution-diffusion processes (32). The current results
align with Chokshi et al., who reported that the release pro-
file for Rifampicin-loaded SLNs followed the Weibull model
(33). Li et al. reported that the Weibull model was the best-
fitting model to describe the Tetrandrine release pattern
from SLNs (32). Khames et al. indicated that the release
of natamycin from SLNs followed the Weibull model (34).
In addition, our results are consistent with Andrade et al.
findings which reported that the release of praziquantel
from SLNs was fitted to the Weibull model (35). However,
our findings are contrary to the results of Chantaburanan
et al., which showed the release of ibuprofen was fitted to
Higuchi’s kinetics (36). Furthermore, Kushwaha et al. re-
vealed that the release of raloxifene hydrochloride from
SLNs had higher linearity with the Higuchi model (37). Ac-
cording to these results, it can be concluded that SLNs can
be appropriate nanocarriers for the sustained release of
thymol.

4.4. Cytotoxicity Evaluation

As presented in Figure 5, thymol-loaded SLNs (Th-SLNs)
were more cytotoxic than free thymol and blank SLNs (P <
0.05). The IC50 values for thymol, SLNs, and Th-SLNs were
39.22 ± 0.9, 94.87 ± 1.1, and 7.88 ± 0.7 µM, respectively (Ta-
ble 3). Blank-SLN had a negligible effect on cell viability,
indicating that SLN compositions are biocompatible and
appropriate for drug delivery. As expected, the viability of
cells reduced with increasing the concentration of thymol.
According to the results, Th-SLNs are more efficiently taken
up by cancer cells than free thymol. These findings could
be related to the different cell uptake pathways between
thymol-loaded SLNs and free thymol. According to previ-
ous studies, endocytosis is the main cellular uptake path-
way for nanoparticles in cancer cells (27). Consequently,
the higher efficiency of thymol-loaded SLNs may be asso-
ciated with effective endocytosis of SLNs in cells, result-
ing in more internalization of thymol in cancerous cells.
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Figure 2. FTIR spectra of A, thymol; and B, thymol-loaded solid lipid nanoparticles (SLNs)

On the other hand, it has been reported that thymol trig-
gered apoptosis through the intrinsic pathway in the blad-
der (38) and breast cancer cells (23). Also, it has been re-
ported that thymol exhibits anti-cancer activity by activat-
ing the Bcl-2/Bax protein, an apoptosis regulator (23).

Additionally, several studies reported that encapsulat-
ing essential oil in SLNs increases anti-cancer activity. Val-
izadeh et al. prepared SLNs containing Zataria multiflora
essential oil to improve anti-cancer activity against breast
and skin cancer. They found that essential oil loaded in
SLNs had a more remarkable anti-cancer effect than free es-
sential oil on cancer cells (17). Dousti et al. evaluated the
anti-cancer activity of Pistacia atlantica essential oil loaded
in SLNs against breast cancer. It was observed that essential
oil loaded in nanocarriers could trigger more apoptosis in
breast cancer cells than free essential oil (39).

According to previous studies and our results, the ef-
fective cytotoxic activity of thymol-loaded SLNs may be be-

cause it promotes apoptosis in cancer cells more than free
thymol. However, further studies are required to confirm
these results.

4.5. Hemolysis Assay

A hemolysis study was performed to evaluate the in-
travenous safety of SLNs. As presented in Figure 6A, the
hemolysis percentage of SLNs at different concentrations
was less than 5%. A hemolysis rate of less than 5% is consid-
ered safe (40). Moreover, the RBCs treated with H2O (as pos-
itive control) and PBS (as negative control) displayed sig-
nificant and non-significant hemolysis, respectively (Fig-
ure 6B). These results indicated the biocompatibility of SLN
compositions, in line with previous studies reporting that
SLNs are hemocompatible (41, 42). For example, Sahib et al.
and Veider et al. reported insignificant hemolysis caused
by SLNs (43, 44).
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Table 2. Regression Coefficient and Mean Percentage Error Obtained After Fitting the Data of Thymol Release from Solid Lipid Nanoparticles to Mathematical Models

Parameters
Models

Zero-order First Order Higuchi Korsmeyer–Peppas Hixcon Weibull Linear Wagner Logarithmic Wagner

R2 0.9930 0.8682 0.9625 0.9716 0.9293 0.9948 0.9874 0.9729

MPE% 48.82 405.29 99.12 25.42 209.69 7.99 17.74 15.67

Abbreviations: R2 , regression coefficient; MPE%, mean percentage error.
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Table 3. The IC50 Values for Thymol, Solid Lipid Nanoparticles, and Thymol-loaded
Solid Lipid Nanoparticles

Formulation IC50 (µM)

Thymol 39.22 ± 0.9

SLNs 94.87 ± 1.1

Th-SLNs 7.88 ± 0.7

Abbreviations: SLNs, solid lipid nanoparticles; Th-SLNs, thymol-loaded SLNs.

4.6. Conclusions
According to the obtained results, thymol was success-

fully encapsulated into SLNs. The 145 nm SLNs with a nar-

row size distribution and EE% of 63% were obtained. The
in vitro release study showed the sustained release of thy-
mol from SLNs. The anti-cancer activity of thymol-loaded
SLNs was more effective than that of free thymol. More-
over, the hemolysis assay indicated that SLNs were hemo-
compatible, supporting their intravenous injection safety.
Based on these findings, SLNs can provide a platform to im-
prove the efficiency of thymol and other essential oil com-
ponents for future cancer treatment. However, compre-
hensive in vivo studies are needed to evaluate the detailed
effects and side effects of SLNs as nanocarriers.
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