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Abstract

Background: Neurotoxicity is one of the most recognized effects of acrylamide (ACR) in humans and animals. Oxidative stress is
an important mechanism in ACR-induced neurotoxicity.
Objectives: In this research, the effect of silymarin as a potent antioxidant was evaluated against ACR-induced toxicity in both in
vitro and in vivo models.
Methods: For the in vitro assay, PC12 cells were exposed to different concentrations (2.5 - 100 µM) of silymarin for 24 hours. ACR at
a final concentration of 5 mM was added and cell viability was determined using the MTT assay. For the in vivo study, neurotoxicity
was induced using intraperitoneal (IP) administration of ACR (50 mg/kg) for 11 days. The effects of different doses of silymarin (40,
80, and 160 mg/kg IP, respectively) were evaluated in ACR-induced neurotoxicity in Wistar rats based on gait scores.
Results: Exposure to ACR reduced cell viability in PC12 cells. Pre-treatment of cells with silymarin (100 µM) significantly reduced
ACR-induced toxicity. In addition, administration of ACR induced severe toxicity in Wistar rats, while silymarin at a dose of 160
mg/kg could improve the rats’ gait abnormalities.
Conclusions: With regard to the potent antioxidant properties of silymarin, the neuroprotective effects of this natural compound
suggested in the current study may in part be mediated through inhibition of oxidative stress.
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1. Background

Acrylamide (ACR, 2-propenamide, C3H5NO) is a col-
orless, odorless crystalline produced by the hydration of
acrylonitrile. It is soluble in polar solvents, such as wa-
ter and alcohol (1, 2). ACR is used in the production of
polymers for applications in various chemical industries,
such as cosmetics, water and wastewater management,
road construction, and papermaking. It also has an im-
portant application in laboratory research for the gel elec-
trophoretic separation of molecules. Because of its wide
application, people experience high levels of exposure (3).
Additionally, ACR has been found in various thermally pro-
cessed foods, such as potato chips, biscuits, and coffee.
The average daily ACR intake has been calculated at 34.03
µg/person/day, which is equivalent to 0.57 µg/kg body
weight/day (based on a body weight of 60 kg) (4).

Neurotoxicity is a major consequence of exposure to
ACR, and considerable attention has been drawn to this
area of investigation over the past 40 years. Symptoms in-

clude ataxia, skeletal muscle weakness, weight loss, and
sensory and motor dysfunction (5, 6).

It is suggested that oxidative stress plays a major role in
the progression of ACR neurotoxicity (7). ACR is conjugated
with reduced glutathione (GSH) and the resulting complex
is metabolized by cytochrome P450 (subtype CYP 2E1) to
form glycidamide. This increases lipid peroxidation and
reduces antioxidant capacity in nervous tissue and the sci-
atic nerve (8). Exposure to ACR elevates the generation of
reactive oxygen species and induces apoptosis in PC12 cells
(9). Also, in rodent models, it has caused lipid peroxida-
tion, depletion in GSH levels, and alterations in apoptotic
markers (8, 10-13).

Several studies have demonstrated that natural com-
pounds with antioxidant properties could be important
tools for decreasing the progression of neurodegenerative
disease in animal models, as well as in humans (14-19).
Silybum marianum (milk thistle) has been used as a hep-
atoprotective compound and a liver detoxifier and for the
treatment of bile duct and gallbladder disorders (20). The
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renal protection effects of silymarin have been reported
(21). Silymarin is a lipophilic extract from the seeds (fruit)
of the milk thistle plant (20), which is composed of a mix-
ture of lignan-derived flavonols containing mostly silib-
inin (silybin), silydianin, silychristin, and isosilybin (22,
23). The potent antioxidant properties of silymarin (24)
and its ability to penetrate the blood–brain barrier sup-
port the use of this natural compound as a possible neuro-
protective agent (25). Silymarin has been shown to signif-
icantly reduce lipid peroxidation (26) and to improve psy-
chomotor and cognitive abnormalities in animal models
(27).

One study showed that the neuroprotective effects of
silymarin on cerebral ischemic damage in middle cere-
bral artery occlusion (MCAO)-reperfusion rats was proba-
bly mediated by the inhibition of neurological deficits and
oxidative damage, followed by the inhibition of apoptosis
responses. These observations suggest that silymarin may
be a potential neuroprotective agent against a variety of
conditions in which cellular damage is a consequence of
oxidative stress (28).

2. Objectives

In this study, the possible neuroprotective effect of sily-
marin, a well-known antioxidant, on ACR-induced neuro-
toxicity was evaluated using both in vitro and in vivo mod-
els.

3. Methods

3.1. Chemicals

RPMI 1640 and fetal bovine serum (FBS) were acquired
from Gibco, while the 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-
diphenyl tetrazolium bromide (MTT) and silymarin were
obtained from Sigma. Acrylamide was purchased from
Merck.

3.2. Cell Culture

PC12 cells, the rat adrenal pheochromocytoma cell line,
were obtained from the Pasteur institute (Tehran, Iran).
The cells were cultured as follows: 37°C with 5% CO2 and
a humidified atmosphere (90%). The cells were cultured
in RPMI 1640 medium supplemented with 10% (v/v) heat-
inactivated FBS, 100 U/mL of penicillin, and 100 mg/ml of
streptomycin.

3.3. Cell Viability

Cell viability was determined using the MTT assay (9).
PC12 cells were cultured in a 96-well microtiter plate at a
density of 5,000 cells/well. After pretreatment with sily-
marin (1, 2.5, 5, 10, 20, 50, and 100 mM) for 24 hours, ACR at
a final concentration of 5 mM was added to each well. After
incubation for 24 hours, the cells were exposed to MTT so-
lution (final concentration 0.5 mg/mL) for 3 hours at 37°C.
Finally, the insoluble formazan was solubilized in dimethyl
sulfoxide (DMSO). The absorbance was determined at 545
nm (630 nm as a reference) in an ELISA reader (Start Fax-
2100, UK).

3.4. Experimental Animals

Animals were used according to the ethical commit-
tee acts and guidelines of Mashhad University of Medical
Sciences committee. Male Wistar rats weighing 230 - 250
g were obtained from the Veterinary and Animal Sciences
University, Mashhad, Iran. They were housed in bracket
cages under standard conditions of 12 hours light/dark cy-
cles at 21 ± 2°C and were fed commercial pellet food and
water ad libitum during the dosing period.

3.5. Experimental Design

Neurotoxicity was induced using ACR at a dose of
50 mg/kg/day intraperitoneally (IP) for 11 days (5). This
daily dose and corresponding route have been well-
characterized with respect to neuropathological expres-
sion and neurological deficits. For our study, the rats were
divided randomly into 7 groups (6 rats each) and treat-
ment was given as follows:

1) Control, normal saline,
2) ACR, 50 mg/kg IP for 11 days,
3) ACR, 50 mg/kg IP for 11 days + silymarin 40 mg/kg,
4) ACR, 50 mg/kg IP for 11 days + silymarin 80 mg/ kg,
5) ACR, 50 mg/kg IP for 11 days + silymarin 160 mg/kg

(29),
6) ACR, 50 mg/kg IP for 11 days + vitamin E 200 mg/ kg

IP (30),
7) Silymarin 160 mg/kg.
It should be mentioned that the silymarin was given IP

during the treatment with ACR.

3.6. Behavioral Index Examination (Gait Score)

After finishing the treatment protocol, gait scores
were examined according to the methods described by
LoPachin et al. (31). The rats were placed in a clear plex-
iglass box and observed for 3 minutes. Following the ob-
servation, a gait score was determined on a scale of 1 to
4, where 1 = normal, unaffected gait; 2 = slightly affected
gait (foot splay, slight hind limb weakness, and spread); 3
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= moderately affected gait (foot splay, moderate hind limb
weakness, and moderate limb spread during ambulation,)
and 4 = severely affected gait (foot splay, severe hind limb
weakness, dragging hind limbs, and inability to rear).

3.7. Statistical Analysis

For the in vitro assay, results are expressed as mean
± SD. Statistical analyses were performed with ANOVA fol-
lowed by the Tukey-Kramer test to compare the differences
between means. For the in vivo assay, the results are ex-
pressed as median with range, and the Kruskal-Wallis non-
parametric test was used for statistical analysis. Differ-
ences were considered statistically significant when P <
0.05.

4. Results

4.1. Effect of ACR on PC12 Cells

Exposure of PC12 cells to ACR significantly reduced cell
viability in a dose-dependent manner. The IC50 was calcu-
lated at 5 mM (Figure 1).

Figure 1. Cell Viability of PC12 Cells After Exposure to ACR for 24 Hours
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Cell viability was determined with the MTT test. Data are expressed as mean± SD of
four separate experiments; **P < 0.01 and ***P < 0.001 vs. control.

4.2. Effect of Silymarin on PC12 Cells

The PC12 cells were exposed to different concentrations
of silymarin (1, 2.5, 5, 10, 20, 50, and 100 µM) for 24 and
48 hours to determine the non-toxic concentration. Sily-
marin at all concentrations did not alter cell viability com-
pared to the control treated cells. The results are shown in
Figure 2.

Figure 2. Cell Viability of PC12 Cells After Exposure to Silymarin for 24 and 48 hours
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Cell viability was determined with the MTT test. Data are expressed as the mean ±
SD from three separate experiments.

Figure 3. Effect of Silymarin on ACR-Induced Cytotoxicity in PC12 Cells
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Cells were pretreated with different concentrations of silymarin for 24 hours before
exposure to 5 mM of ACR. Data are expressed as the mean ± SD of three separate
experiments; ***P < 0.001 vs. control, ##P < 0. 01 vs. ACR-treated cells; ACR, acry-
lamide; SLY, silymarin.

4.3. Effect of Silymarin on ACR-Induced Cytotoxicity in PC12 Cells

At the next step, to assay the protective effect of sily-
marin, the cells were treated with different concentrations
of silymarin (2.5, 5, 10, 20, 50, and 100µM) for 24 hours. ACR
at a concentration of 5 mM was added to the cells and after
24 hours of exposure, cell viability was evaluated using the
MTT assay. Treatment of cells with the 100 mM concentra-
tion of silymarin for 24 hours significantly increased cell
viability compared to ACR (P < 0.001) (Figure 3).

Jundishapur J Nat Pharm Prod. 2016; 11(4):e37644. 3

http://jjnpp.com/


Mehri S et al.

Figure 4. Effects of Silymarin on Behavioral Index (Gait Scores) in Rats During Treat-
ment With ACR (50 mg/kg, IP) for 11 Days

Data are expressed as the median with range (n = 6); **P < 0.01 vs. control, #P < 0.05
vs. ACR-treated animals; ACR, acrylamide; SLY, silymarin.

4.4. Effect of ACR on Gait Scores in Rats and the Neuroprotective
Effect of Silymarin

Exposure to ACR (50 mg/kg IP) for 11 days induced pro-
gressive gait abnormalities in the rats, as shown in Fig-
ure 4. Simultaneous treatment of animals with silymarin
and ACR (50 mg/kg, IP) significantly reduced ACR-induced
gait abnormalities in a dose-dependent manner (P < 0.05),
but the greatest neuroprotective effect of silymarin was ob-
served at the dose of 160 mg/kg (Figure 4).

5. Discussion

According to our results, ACR induced toxicity in both
in vitro and in vivo models. In addition, silymarin inhib-
ited ACR-induced toxicity in PC12 cells. Treatment of ani-
mals with silymarin significantly reduced gait abnormal-
ities, especially at a dose of 160 mg/kg, when the animals
received it simultaneously with ACR.

Exposure to ACR could damage both the central and
the peripheral nervous systems, manifesting as weight
loss, ataxia, and skeletal muscle weakness (5, 32). Several
mechanisms are involved in ACR-induced neurotoxicity,
including the induction of oxidative stress (8, 30, 33), the
apoptosis pathway (9, 34), and modulation of neurotrans-
mitter release. ACR induces apoptosis in neurons and as-
trocytes in a time- and dose-dependent manner (35).

Recent evidence suggests that ACR forms adducts
within presynaptic proteins, resulting in altered neuro-
transmission and inactivation of enzymes involved in neu-

ronal energy production (36, 37). ACR conjugates with re-
duced glutathione (GSH) as the main antioxidant for detox-
ification. The ability of ACR to decrease antioxidant levels
could be related, directly or indirectly, to its free-radical-
production ability, thus leading to oxidative stress (3).

With regard to the important role of oxidative stress
in ACR-induced toxicity in both in vitro and in vivo mod-
els, antioxidant agents are noted as potential factors in
the inhibition of ACR toxicity. Several studies have shown
neuroprotective effects of silymarin using in vitro and in
vivo models. Administration of silymarin (200 mg/kg)
for 2 weeks could diminish 6-hydroxydopamine–induced
Parkinson’s in a rat model (38). The effects of silymarin
in this model were mediated through inhibition of ox-
idative stress. Malondialdehyde content as a marker of
lipid peroxidation significantly attenuated in the mid-
brain following exposure to silymarin. In another study,
silymarin (200 and 400 mg/kg doses) inhibited oxidative
stress in aged and young rat brains. Silymarin signifi-
cantly decreased protein oxidation in the hippocampus
and cortex tissues of animals (29). In the cerebral global
ischemic rat model, exposure to silymarin decreased cog-
nitive and motor function and doses of 50 - 100 µM sig-
nificantly reduced amyloidβ-induced toxicity in PC12 cells
(39). Silymarin (20 - 80 µM) protected dopaminergic neu-
rons against lipopolysaccharide-induced neurotoxicity by
inhibiting microglia activation (25).

The fact that the neuroprotective properties of sily-
marin are in part modulated through potent antioxidant
activity suggests that silymarin’s effects on ACR-induced
toxicity in PC12 cells and in rats may be due its antioxidant
activity.

In the present study, vitamin E was used as a positive
control for protection against ACR-induced neurotoxicity.
The results showed no difference between the effects of vi-
tamin E and silymarin (160 mg/kg) on the inhibition of an-
imal gait abnormalities. Therefore, the findings suggest
that the protective effect of silymarin against ACR-induced
toxicity in PC12 cells and Wistar rats may be partly due to
the potent antioxidant properties of this natural compo-
nent.
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