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Abstract

Zirconium (Zr) is known to be one of the metal compounds. Due to low toxicity, this compound is frequently used in biosensors,
dentistry, and treatment of cancer. This review summarizes the studies conducted on Zr toxicity in vivo and in vitro. Overall, it
has been concluded that Zr can be a poisonous component because it disrupts many different tissues and cells when exposed
for an extended period of time. It has been observed that Zr induces oxidative stress in cells, resulting in cell death. These
nanoparticles (NPs) have been shown to halt the cell cycle, breach various physiological barriers, and exert detrimental effects. As
zirconiumnanoparticle production is still under development, a standardizedmethodhas not been established. Consequently, the
characteristics and functionality of these NPsmay undergo alterations, potentially compromising their efficacy and safety.

Keywords: Zirconium, Toxicity, Nanoparticle

1. Context

Nanotechnology provides many components used
in various industries in many developed countries (1).
This new technology uses different compounds and
aims to design materials in nanometer dimensions
and better function (2). Although nanotechnology has
prepared some new manufacturing opportunities in
various industries, unfortunately, the properties of many
of the used substances have not yet been completely
determined; in addition, their toxicity levels have not
been evaluated for humans inmany cases (3). The suitable
properties of metal nanoparticles (NPs) (such as being
small and large sizes) and versatile surface features (such
as charge, conductivity, shape,melting, and freezing point
difference) have led metal NPs and metal oxide NPs to
be used in various industries. One example is zirconium
(Zr), which itself and its derivative are widely used. Some
previous studies have revealed that NPs can penetrate
through biological barriers, accumulate in different
organs, and induce toxic effects, such as cell death, DNA
damage, oxidative stress, and morphological changes;
therefore, cytotoxicity and genotoxicity assessment of NPs
is necessary (4-6). Zirconiumand its derivatives [including
zirconium oxide (ZrO2)] have been used to produce
some useful NPs in many fields related to human health
(including dental implants, bone joint replacements, and

drug delivery vehicles) (7).

Ag@ZrO2 nanoparticles, consisting of a ZrO2 core
coated with Ag nanoparticles, exhibit efficacy against
various Gram-negative bacteria such as Escherichia coli and
Staphylococcus aureus, as well as certain fungal species like
Candida albicans, Candida glabrata, Aspergillus niger, and
Aspergillus flavus.

Thus, it was suggested to be used as a microbiocide
in water treatment (4). Although some studies have
investigated the positive effect of Zr and its derivatives and
suggested the use of Zr NPs in various industries, some
other studies have evaluated and proven the cytotoxicity
and genotoxicity effects of these compounds (8). It has
been shown that ZrO2 NPs induce toxic mechanisms in
macrophages by perturbation in the cytoskeleton and
phagocytosis and increasing methylglyoxal-associated
DNA damage (5). The other recent study supported that
ZrO2 NPs induce DNA damage and apoptosis in mouse
fibroblast cell lines (3). Further, it has been indicated that
exposure to ZrO2 causes toxicity in zebrafish embryos,
leading to mortality, hatching delay, andmalformation in
aquatic environments (8). Novel colloidal silica spheres
coated with crystalline or amorphous Zr (SiO2@ZrO2

cryst

or SiO2@ZrO2
am) have been reported to induce both

cytotoxicity and genotoxicity in a human osteosarcoma
cell line (MG-63) by reducing cell viability and increasing
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reactive oxygen species (ROS) and DNA damage at 5 and 25
µg/mL (9). According to the importance of the use of Zr
in biomedical fields, it is important to review studies that
have investigated the genotoxicity and cytotoxicity effects
of Zr from different aspects and in different contexts
(10). Also, the synthesis of Zr NPs in a green way has
recently attracted the attention of researchers (Table
1). The synthesis of Zr NPs is usually done by physical
and chemical methods. Physical methods have high
costs, and chemical methods cause a lot of pollution to
the environment in terms of toxicity. For this reason,
producing NPs in a green way can reduce the pollution
related to zirconium synthesis (11-15). This study reviewed,
compared, and discussed the results of different studies
in thementioned field.

2. In Vitro Studies

2.1. Cell Line Studies for Zr Toxicity

Recently developed Zr nanostructures may have
harmful effects on cells in a dose-dependent manner
(25, 26). Zirconium can affect osteoblast cells. In the
study by Ye and Shi, the toxicity effect of Zr NPs on
osteoblast-like 3T3-E1 cells was investigated. Using
cytotoxicity tests, they showed that Zr NPs with the
production of ROS caused apoptosis, and death could be
harmful to osteoblast-like 3T3-E1 cells in a dose-dependent
manner (27). Another study showed that Zr might
drastically up- or downregulate the expression of a
number of genes that control a wide variety of functional
activities in osteoblast-like (MG-63) cells, including cell
cycle regulation, immunology, signal transduction, and
vesicular transport (19).

Dental implants are one of the causes of chronic
Zr toxicity. In this regard, several studies have been
conducted on the impact of Zr on different cells. These
studies have shown that Zr can be poisonous and damage
many different types of tissues and cells when exposed
for an extended period of time (28, 29). Also, using a
Zr toxicity test on periodontal ligament cells with the
lentiviral gene transfer technique of human telomerase
reverse transcriptase, it was determined that Zr damaged
cellular DNA in a dose-dependentmanner (30).

Neurotoxicity of Zr NPs was also tested on PC12 and
N2a cells from a rat pheochromocytoma and mouse
neuroblastoma, respectively. Zirconium nanoparticles
significantlydecreased cell viability andglutathione (GSH)
levels in PC12 and N2a cells while significantly increasing
intracellularROSandMDAlevels. Zirconiumnanoparticles
have cytotoxic and genotoxic effects on PC12 and N2a
cells in time- and concentration-dependent manners at
concentrations higher than 31 g/mL (31).

Zirconium can have destructive effects on blood cells,
as mentioned in previous studies. For example, a study
conducted on Zr revealed a considerable DNA damage
induction at 5mM and apoptosis in human (Jurkat) T cells
at concentrations over 0.5 mM (32); in addition, tumor
necrosis factor α (TNF-α) release and macrophage death
in the J774 mouse cell line were both induced by Zr
particles of around 0.6 µm (33). The tumor suppressor
proteins p53 and p73 are produced in greater amounts
when human bone marrow-derived stromal stem cells
(hMSCs) are exposed to submicron particles of Zr (34). Sai
Saraswathi and Santhakumar evaluated the cytotoxicity
of ZrO2 NPs and the aqueous extract of Lagerstroemia
speciosa on MCF-7 cell lines. The results showed that
this compound containing Zr NPs was able to inhibit cell
growth on the MCF-7 cancer cell line in a dose-dependent
manner compared to the control group (19). This cytotoxic
property of Zr may have an inhibitory effect on the
uncontrolled growth of cancer cells and can be used in
anticancer compounds and drugs.

3. In Vivo Studies

3.1. Non-animal Studies

3.1.1. Microbial Toxicity of Zr

The rise of antibiotic resistance has emerged as a
significant global concern. Today, with the advancement
of nanobiotechnology knowledge, Zr NPs can be used to
prevent infections in implants and antimicrobial drug
delivery systems (35, 36). For instance, Imran et al.
investigated the antibacterial activity of ZrO2 NPs doped
with Fe3O4, showing an increase in antibacterial activity
against S. aureus, E. coli, and Bacillus subtilis (37). Similarly,
Rad Goudarzi et al. investigated the effect of ZrO2 NPs
doped with Fe3O4 and hydroxyapatite on S. aureus; using
microbial tests, they showed that this compound also had
significant lethal effects on S. aureus (38). Jangra et al.
showed that Zr only had antibacterial properties against
E. coli, while in addition to significant antifungal activity,
also its various compounds have antibacterial activity
against S. aureus as well (39). In the study by Doskocz
and Załeska-Radziwiłł, the effect of ZrO2 NPs and their
macromoleculeswasexamined(40). TheyshowedthatNPs
might have a strong killing effect on microorganisms. In
fact, the results of this study show that Zr NPs are more
toxic than Zr.

3.1.2. Plants

The effects of Zr on plants have also been investigated.
Plants absorb Zr in various quantities, primarily through
their root system, which enables its entry into the food
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Table 1. Green Synthesized Nanoparticles

No. Plant Origin Morphology Size (nm) Part Application Reference

1 Capscicum annuum Baddeleyite 13.06 - 22.02 Leaves Antibacterial, antifungal (16)

2 Aloe vera Spherical 50 - 100 Leaves Antimicrobial, antifungal (17)

3 Nyctanthes arbor-tristis - - Flowers Antibacterial (18)

4 Lagerstroemia speciosa Tetragonal 56.8 Leaves Cytotoxicity study, photocatalytic activities (19)

5 Sargassumwightii Spherical 4.8 - Antibacterial (20)

6 Punica granatum - 20 - 60 Fruit peels Antibacterial (21)

7 Helianthus annuus Monoclinic 40 Seeds Biocompatible inmedical implantation, antibacterial (22)

8 Eucalyptus globulus Spherical 9 - 11 Leaves Antioxidant, cytotoxicity (23)

9 Aegle marmelos - 38 Fruit Antibacterial (24)

chain. After uptake from water or soil, Zr tends to
accumulate predominantly in root cells. It is worth
noting that Zr has no recognized essential function
in the metabolism of plants or animals. However, it
can still have significant effects on plant growth and
influence plant enzyme activity. In response to Zr-induced
toxicity, plantshave evolvedmultipledefensemechanisms
to cope with these adverse effects. These strategies
include sequestering Zr in their root tissues and activating
diverse antioxidants to prevent its harmful effects (41).
For example, Fodor et al. found that Zr ascorbate
caused physiological changes in wheat seedlings. It
was found that after 9 days of exposure to different
concentrations, this compound inhibited germination,
delayed the growth of roots and shoots, and increased the
activity of antioxidant enzymes. Also, it was found that
Zr ascorbate is only harmful at a concentration of 100mM
and above (42). Although there are limited published data
on the subject, it appears that the phytotoxicity of Zr is
generally low.

3.1.3. Insects

In a study, researchers carried out a genotoxic
evaluationof ZrO2 NPs and theirmicroparticulate forms in
Drosophila melanogaster using the wing somatic mutation
and recombination assay. Third-instar larvae were fed
with ZrO2 NPs and their microparticulate forms at
concentrations of 0.1 to 10mM. The results showed that no
significant increases were observed in the frequency of all
spots, indicating that these NPs cannot induce genotoxic
activity in the wing spot assay of D. melanogaster. Negative
data were also obtained with the microparticulate
forms. This indicates that the nanoparticulated form of
ZrO2 does not modify the potential genotoxicity of its
microparticulate versions (43).

Also, in an experiment, different
Zr(NO3)4nanocomposites were mixed in insect food.

This study showed that the composite mixture (10% hBN
and 90% ZrO2) had no significant effect on insect growth,
had weak cytotoxicity, and might be safe in the field of
biomedicine. However, nanocomposites (90% hBN 10%
ZrO2) caused more cytotoxicity and phenotypic changes
in the insect (44).

3.2. Animal Studies

3.2.1. Fish

In India, Mishra and Mahapatra conducted a study
on the function of different organs of Channa punctata
(a species of snakehead) in terms of toxicity with heavy
metals such as Zr. The results showed that chronic
exposure to lethal concentrations of ZrOCl2led to a
significant decrease in protein and fat concentrations in
their liver and muscle. In addition, degenerative changes
were detected in different parts of the fish, including
the gill, intestine, stomach, and liver exposed to Zr
oxychloride, along with various nuclear abnormalities
andmicronucleus (45).

P et al. investigated the toxicity of ZrO2 NPs in
zebrafish (Danio rerio). They used concentrations of 1,
2, 3, 4, and 5 µg/mL of ZrO2 NPs and finally concluded
that this substance caused acute developmental toxicity
in these embryos, causing death, hatching delay, and
malformations at lower concentrations (46).

3.2.2. Rabbits

Kang et al. reported sensitization to compounds
of beryllium, zirconium lactate, zirconium aluminum
glycinate, and aluminum in rabbits inoculated with
multiple injections of sodium zirconium lactate. The
results showed inhibition of macrophage migration and
skin reactivity. Histologically, sodium zirconium lactate
and aluminum chlorohydrate induced organized foreign
body granulomas after intradermal injection in normal
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and inoculated rabbits. Sodium zirconium lactate and
aluminumchlorohydrate inducedorganized foreignbody
granulomas after intradermal injection in normal and
treated rabbits (47). Furthermore, the immunological
response of pulmonary bronchus cells to aluminum
chlorohydrate and zirconium salts (sodium, lactate, and
aluminumglycine) was investigated in rabbits. As a result,
aluminum and zirconium salts can cause respiratory
bronchiolitis and activation of alveolar macrophages in a
relatively high dose (10mg) (48).

3.2.3. Rats

Landsiedel et al. conducted a study to evaluate
the impact of 13 nanomaterials, including ZrO2, on the
lungs of rats. The results indicated that exposure to
aerosol concentrations of ZrO2 up to 10 mg/m3 did
not elicit any treatment-related effects on cytological
levels. Additionally, ZrO2 did not cause alterations in
protein, enzyme, or cytokines levels in bronchoalveolar
lavage fluid or in lung tissue. Furthermore, blood
parameters and acute phase protein levels in the blood
remained unchanged throughout the study. There were
no histopathological changes in the respiratory tract, and
the rate of cell proliferation and apoptotic reactions in
lung cells were not significantly different from the control
groups (49). In addition, in the study conducted by
Spiegl et al., 270 animals from 5 different species were
exposed to zirconium compounds through inhalation for
6 hours a day and 5 days a week at the rate of 75 mg/m3.
The results showed that ZrO2 did not cause any specific
changes in mortality, growth rate, blood non-protein
nitrogen or fibrinogen, urinary protein, hematological
factors, or structural structure, but Zr at the rate of 6
mg/m3 caused suspicious changes in the concentration of
blood compounds. It increased blood hemoglobin and
red blood cell counts in dogs and also increasedmortality
rates in rats and guinea pigs. Also, inhaled zirconium
compounds were mainly deposited in the lymph nodes
and lungs (50). In addition, it was found that rats that
were exposed to ZrO2 particles had a significant increase
in the level of liver andkidney enzymes, and this substance
also caused increased levels of free radicals in their blood.
They used 25-, 50-, and 100-ppm NPs (51). Mehdikhani et
al. reported that ZrO2 NPs probably damage the testes
by increasing the production of ROS and free radicals.
They observed that rats receiving 400 ppm of Zr had a
contraction of the seminiferous tubules and decreased
lumen space in the testicles compared to normal rats
(52). In addition to examining the biodistribution of ZrO2

NPs, GBD 2016 Traumatic Brain Injury and Spinal Cord
Injury Collaborators examined oxidative stress factors,
histopathology, and immunohistochemistry in the spleen,

kidney, heart, brain, and lung of rats at 6-time points after
a single injection of ZrO2 NPs, finding that Zr can cause
continuous oxidative damage and promote/inhibit cell
proliferation in these organs. Accordingly, they concluded
that Zr can cause destructive effects on these organs (53).
Brown et al. found that zirconium lactate and barium
zirconate caused poor weight gain, pathological changes
consistent with chronic interstitial pneumonitis, very
little deposition of fibrous tissue, absence of granuloma,
and increased amount of Zr in the lung tissue of rats
treated with these substances (54). Furthermore, in a
study to evaluate the intrinsic effects of the trace elements
zirconium, niobium, antimony, and vanadium (as well as
to re-evaluate the effects of lead, 603 rats of the Long-Evans
strain were fed a diet containing relatively small amounts
of these elements in an environment reasonably free of
trace contaminants. An increased incidence of glycosuria
was observed in zirconium, niobium, and leadgroups (55).

3.2.4. Mice

The effect of Zr on mice has also been determined.
Dekkers et al. investigated the effect of Zr doping of CeO2

NPs on the respiratory and cardiovascular system inmice.
According to their results, subacute inhalation of CeO2

NPs causedminimalpulmonary andcardiovascular effects
within 4weeks after exposure, and Zr doping has a limited
effect on these responses (56). Moreover, in another study,
to evaluate the intrinsic effects of certain trace elements,
540micewere fed adiet of rye, corn oil, and skimmedmilk
containingmoderate amounts of zirconium and niobium
and no detectable antimony or fluorine in a relatively free
environment. Trace pollutants were given. It was found
that Zr toxicity caused minor toxicity in both control and
treatment groups. Chromium, fluorine, and nickel had no
demonstrable intrinsic toxicity, while tellurium, arsenic,
tin, and vanadium showed the greatest toxicity (57).

3.2.5. Mini Pig

He et al. investigated Ti and ZrO2 implants in mini
pig maxillae. After 12 weeks of implantation, the content
of Ti released from Ti implants was twice more than the
content of Zr released from ZrO2 implants in mini pig
maxillae. The half maximal effective concentration (EC50)
of ZrO2 NPs and ZrO2 microparticles was 13.96 and 80.99
mg/mL, respectively. Also, these substances can induce
DNA damage at 70 and 810µg/mL, respectively (30).

4. Conclusions and Perspectives

Zirconium and its derivatives can have a very effective
effect on human health and prevent infections from
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different sources, but it should be noted that their
excessive and long-term use can have negative effects
on the environment and living organisms. Exposure to
Zr has been reported through various ways, including
inhalation, ingestion, skin penetration, etc. Because
Zr is lipophilic, it can accumulate in different organs
(lungs, liver, spleen, heart, brain, and kidney) and
induce oxidative stress. In addition to their small size,
receptor-mediated endocytosis and passing through
paracellular connections have caused them to pass
through the placenta and fetal blood-brain barrier (BBB)
and accumulate in the fetal brain. It has been proven that
ZrO2 NPs cause substantial DNA damage to human T cells.
Furthermore, they can trigger apoptosis and inhibit cell
growth in cell lines. However, more studies are needed to
investigate the chronic and long-term toxicity of Zr.
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