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Abstract

Background: Gastrointestinal (GI) mucositis is one of the serious side effects of methotrexate (MTX) treatment. It is known that
oxidative stress plays an important role in drug-induced side effects.
Objectives: The present study aimed to assess the effect of gallic acid (GA) against MTX-induced intestinal mucositis in male Wistar
rats.
Methods: Twenty-eight adult male Wistar rats were randomly divided into 4 groups (n = 7), including (1) control group; (2) GA
group (gallic acid: 30 mg/kg/day, orally); (3) MTX group [20 mg/kg, intra peritoneal (IP)]; and (4) (MTX + GA) group (MTX: 20 mg/kg,
IP and gallic acid: 30 mg/kg/day, orally). Then amounts of malondialdehyde (MDA), nitric oxide (NO), glutathione peroxidase (GPx),
glutathione (GSH), superoxide dismutase (SOD), interleukin 2 (IL-2) and interleukin 6 (IL-6) were analyzed in serum samples and
then the histopathological examinations of the duodenum and jejunum of animals groups.
Results: The results showed that treatment with GA significantly reduced the MTX-induced elevation of serum MDA (P < 0.001), NO
(P < 0.001), IL-2 (P < 0.001) and IL-6 (P < 0.001) contents and increased MTX-induced reduction in GSH (P < 0.001) content, GPx (P
< 0.001) and SOD (P < 0.001) activity. In addition, the histopathological results showed that MTX leads to intestinal tissue damage,
and gallic acid can remarkably improve the pathological changes.
Conclusions: Our results indicate that gallic acid can mitigate oxidative stress and pro-inflammatory parameters and also
moderately prevent histopathological damage of the small intestine of rats exposed to MTX.
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1. Background

Methotrexate (MTX), a folic acid analog, is a common
and widely used cytotoxic chemotherapeutic drug (1),
inhibiting the dihydrofolate reductase (DHFR) enzyme
and DNA synthesis (2). Methotrexate has been widely
considered for the treatment of malignancies such
as osteosarcoma, lymphocytic leukemia, testicular
tumors, non-Hodgkin lymphoma, mammary gland
tumors, and head and neck cancer (3). Additionally, in
different inflammatory diseases, for example, rheumatoid
arthritis, psoriasis, polymyositis, and systemic lupus
erythematosus, MTX acts as a first-line drug (4).

Unfortunately, the efficacy of MTX has sometimes
been limited by severe side effects and toxic sequel of
different organs, such as hepatotoxicity, nephrotoxicity,

cardiotoxicity, and intestinal toxicity (5). The cytotoxic
effect of MTX is not limited to cancer cells; it affects normal
tissues that have high proliferative activity, for instance,
hematopoietic cells of the bone marrow and the mucous
membrane of the alimentary system (6).

Gastrointestinal (GI) mucositis is a well-recognized
toxicity associated with some standard-dose
chemotherapy regimens usually used with MTX (7). The
mouth and small intestine seem to be most affected by
mucositis (8, 9). Ciralik et al. postulated that MTX caused
damage to the mucosa of the small intestine, leading
to nausea, vomiting, diarrhea, stomatitis, decreased
absorption, and GI ulceration (10). About 40% of patients
receiving MTX at standard doses experience intestinal
mucositis, while this rate has been reported as almost
100% at high doses (7).
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When intestinal mucositis appeared, the slime layer is
exhausted with a reduced level of mucins (11). Malfunction
of the mucous layer, in turn, exacerbated inflammatory
symptoms and impaired the water-holding capability
of the GI tract, caused aquaporins overexpression, and
ultimately prompted serious diarrhea in intestinal
mucositis (12).

In addition to diarrhea, there are other side effects such
as obvious body-weight reduction, decreased nutrient
uptake, and restricted ability to tolerate therapy, which
resulting in the delay of succeeding cycles or premature
drug withdrawal (13).

Despite extensive clinical trials on
chemotherapy-induced intestinal mucositis over the
years, there are currently no viable treatment options to
effectively combat this condition (14).

It is understood from the investigations that reactive
oxygen species (ROS) have a role in the intestinal toxicity
caused by MTX (15). Also, Kaynar et al. (16) and Gulgun
et al. (17) demonstrated that in the small intestine of the
treated rats with MTX, there were increased oxidant and
decreased antioxidant parameters (16, 17). Another study
by Olsen et al. postulated that MTX could up-regulate
the expression level of pro-inflammatory cytokines of IL-1,
interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF
alpha) in the monocytes (18), de Araujo Jr et al. reported
that in the small intestine, MTX inhibits the signaling
pathway of suppressor of cytokine signaling-1 (SOCS-1),
which has a negative regulatory role in the production of
pro-inflammatory cytokines (19).

Given the impact of oxidative stress and inflammatory
factors on the occurrence of intestinal mucositis,
researchers suggest that it may be possible to reduce
harmful effects on mucositis by using substances that
possess antioxidant and anti-inflammatory properties
(20).

Gallic acid (GA; 3,4,5-trihydroxybenzoic acid) is a
phenolic compound widely found in gall nut, green tea,
hops, grapes, red wine, berries, and oak bark (21).

It is understood from the literature that GA
owns several pharmacological properties, including
antioxidant, anti-inflammatory, ant mutagenic, and
anti-tumor activities (22), and due to these properties,
could ameliorate toxicity of different organs (23-25).
Another study by Khodayar et al. showed that in a rat
model of ulcerative colitis, GA can decrease the levels of
inflammatory mediators (26).

2. Objectives

The present study was designed to investigate
the protective effect of GA against oxidative stress,

pro-inflammatory status, and histopathological injuries
of MTX administration-induced intestinal mucositis in
the duodenum and jejunum of male Wistar rats.

3. Methods

3.1. Chemicals

Gallic acid was purchased from Sigma-Aldrich
Chemical Company (St. Louis, MO, USA, CAT. NO:
G7384). Methotrexate was obtained from NanoAlvand
Laboratories, Iran. Malondialdehyde kit was purchased
from ZellBio Company, Catalog No. RK09070. A superoxide
dismutase kit was provided by ZellBio Company, Catalog
No. RK07054.

In addition to the glutathione peroxidase kit that was
purchased from the same company, Catalog No. RK03696,
Eliza kits of interleukin 2 (IL-2) and IL-6 were obtained from
Abcam Company (ab221834), (ab222503).

3.2. Animals

This study was performed according to the ethical
standards and approved protocols of the Committee of
Animal Experimentation of Dezful University of Medical
Sciences, Dezful, Iran (code: IR.DUMS.REC.1398.023).

Twenty-eight male Wistar rats (weight: 170 - 190 g, 12
- 14 weeks old) were obtained from the animal house of
Dezful University of Medical Sciences, Iran. The animals
were maintained in polypropylene cages under a 12-hour
light/dark cycle. The temperature was maintained at 25°C
and humidity at 60%. Food and water were available ad
libitum.

3.3. Experimental Design

The animals were randomly divided into 4
experimental groups; each group consisted of 7 rats.
Control group: This group was treated with normal saline
(2 mL) by gavage for 10 days and one intra peritoneal
(IP) saline injections on the sixth day. Gallic acid group:
Received gallic acid 30 mg/kg, orally for 10 days (23); MTX
group: Treated with a single dose of MTX (20 mg/kg, IP)
(27) on the 6th day; finally, MTX-GA group: Treated with
gallic acid (30 mg/kg, gavage) for 10 days and a single dose
of MTX (20 mg/kg, IP) on the 6th day. The weight of each
animal was measured on the first and last day of the study.

3.4. Sample Collection

After 24 h of the last administration, the rats were
sacrificed under deep anesthesia using a combination of
ketamine and xylazine (60/6 mg/kg, IP). Blood samples
were collected from rats’ left ventricle, and the serum was
separated through centrifugation for 10 min at 1000 g and
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stored at -20°C until analysis. Samples of the proximal
part of the duodenum and mid-piece of the jejunum
were isolated and washed with cold saline. The tissues
were fixed in phosphate-buffered formalin (10% w/v) for
histological studies.

3.5. Serum Biochemical Assessments

3.5.1. SerumMalondialdehyde Level Assay

Serum was used to assess lipid peroxidation by the
thiobarbituric acid response to the malondialdehyde
(MDA) assay kit (ZellBio GmbH, Ulm, Germany). The
presence of trichloroacetic acid leads to the production
of a red complex. The red color response produced at
532 nm was determined using a nanodrop. This method
determines the level of MDA with a sensitivity of 0.1 µM.

Some researchers including Buege and Aust, Rostami
et al. and Naserzadeh et al., also used the method
of determining serum MDA to determine the state of
oxidative stress (28-30).

3.5.2. Serum Nitric Oxide Assay

Nitric oxide concentration was determined using an
indirect method based on the measurement of nitrite
concentration in serum according to Green et al.’s
reaction (31). Nitrite concentrations were determined by
spectrophotometric analysis at 540 nm. No products were
expressed as nmol/mL.

3.5.3. Serum Superoxide Dismutase (SOD) Activity Assay

The activity of superoxide dismutase was determined
using a diagnostic kit produced by ZellBio Company,
according to Arthur and Boyne (32), and the results have
been stated as units (U) of superoxide dismutase (SOD)
activity per mL.

3.5.4. Serum Glutathione Peroxidase Activity Assay

The activity of glutathione peroxidase was measured
using the glutathione peroxidase (GPx) kit (ZellBio
Company).

In this method, the amount of sample that catalyzes 1
µmol of glutathione (GSH) to GSSG in 1 minute is expressed
as a unit of GPX activity. Results have been stated as U of GPx
activity per mL.

3.5.5. Assessment of Serum (GSH) Content

The evaluation of serum GSH was done using
the protocol designed by Tipple and Rogers (33).
Briefly, in this protocol, the oxidation of GSH by
5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB) leads to
the formation of GSSG and 5-thio-2-nitrobenzoic acid
(TNB). Then, GSSG is reduced to GSH by glutathione

reductase enzyme. In this step, the rate of TNB formation
is proportional to the amount of GSH and GSSG present in
the sample, which is determined by measuring TNB at 412
nm.

3.5.6. Serum Contents of Pro-inflammatory Cytokines of
Interleukin 2 and 6

The amount of serum IL-2 and IL-6 were measured
according to ELISA kits of Abcam Company.

3.6. Histopathological Examination

3.6.1. Morphometric Studies

After fixation of tissues in phosphate-buffered
formalin, the tissues were embedded in paraffin, sectioned
at 5 µm, and then stained with the hematoxylin and eosin
(H&E) staining method for light microscopic observations.
For morphometric studies, 20 fields of each slide were
randomly observed for the following criteria: Villus
height and crypts depth measurements were done from
the baseline of the villus using an objective lens of
magnification × 10 and total magnification of × 100.
Motic Images Plus 3.0 Digital Camera Software was used
for morphometric studies.

3.6.2. Quantitative Histopathological Studies

The mucosal damage of the duodenum and jejunum
was graded using the intestinal injury score as described
by Kesik et al. (34). In this regard, the following criteria
were investigated: (1) loss of crypt architecture; (2) fusion
of villus; (3) widening of villus; (4) crypt loss; (5) dilatation
of blood vessels; (6) cyst formation in lamina propria;
(7) infiltration of neutrophils in lamina propria; and (8)
cuboidal cells of enterocytes. For each parameter, to
compare the severity of the damage, a 3-point scoring was
used: (1) mild damage; (2) moderate damage; and (3) severe
damage. Healthy tissues scored as 0 points (34).

3.7. Statistical Analysis

The normality of the data was assessed using the
Shapiro-Wilk test, and then the significance of differences
between the groups was determined using a one-way
analysis of variance (ANOVA), followed by the Tukey post
hoc test for multiple comparisons. Data are expressed as
mean ± SD. Statistical analysis was done by graph Prism
5.0 (San Diego, CA, USA). P values less than 0.05 were
considered statistically significant.
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4. Results

4.1. Effect of MTX and Gallic Acid on Rat Body Weights

The results obtained from rat body weights of different
groups at the beginning and end of the study are
illustrated in Figure 1. The control rats demonstrated
a significant increase in final body weight (P < 0.001)
compared to initial weights. Gallic acid supplementation
also showed a significantly higher level of final body
weight than initial body weight (P < 0.001). Additionally,
the data of the MTX-GA rats showed a trend toward an
increase in final body weight compared to initial body
weight (P < 0.05).
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Figure 1. Average body weight of different rat groups. *** P < 0.001, * P < 0.05.

4.2. Effect of MTX and Gallic Acid on the Serum Content of MDA

The results of the analyzed data showed a significantly
higher amount of serum MDA in the MTX group than in the
control group (P < 0.001; Table 1). Administration of GA
before MTX could decrease this amount compared to the
MTX group (P < 0.05).

4.3. Effect of MTX and Gallic Acid on Serum Nitric Oxide
Concentration

The obtained results indicated that nitric oxide (NO)
concentration was significantly higher in the serum of
the MTX group than in that of the control group (P
< 0.001; Table 1). Again, it was seen that gallic acid
significantly prevented the elevation of NO concentration
when administered with MTX (P < 0.01).

Table 1. Effect of Gallic Acid on Methotrexate-Induced Oxidative Stress as Measured
by Serum Malondialdehyde, Serum Nitric Oxide a , b , c , d

Groups
Oxidative Stress Parameters

MDA (nmol/mL) NO (nmol/mL)

Control 23.52 ± 4.21 20.24 ± 4.05

GA 24.47 ± 3.54 18.76 ± 4.12

MTX 42.75 ± 7.09 * 65.27 ± 9.25 *

MTX + GA 33.31 ± 5.27 # 50.31 ± 7.53 ##

Abbreviations: GA, gallic acid; MTX, methotrexate; MDA, malondialdehyde; NO,
nitric oxide.
a Oxidative stress in rats was induced by a single dose of MTX (20 mg/kg bw,
IP) and gallic acid (30 mg/kg bw, gavage) that was administered 6 days prior to
MTX treatment and continued till the end of the experiment (4 days). Values
are means ± SD (n = 7).
b Significant change with respect to the control group (* P < 0.001).
c Significant change with respect to MTX group (# P < 0.05; ## P < 0.01).
d The results show that gallic acid attenuated MTX-induced oxidative stress.

4.4. Effect of MTX and Gallic Acid on the Level of SOD in the
Serum of Different Experimental Groups

As seen in Table 2, the serum content of the SOD
enzyme was significantly lower in the MTX group than in
the control group (P < 0.001). Again, it is seen in this
table that gallic acid treatment could increase this value
significantly compared to the MTX group (P < 0.001).

4.5. Effect of MTX and Gallic Acid on Serum GPx Content

As shown in Table 2, administration of MTX
significantly decreased the level of serum GPx content
compared to the control group; thus, a P value < 0.001
was obtained. Additionally, the analyzed data showed that
treatment of gallic acid could significantly increase this
amount compared to the MTX group (P < 0.01).

Table 2. Effect of Gallic Acid on Methotrexate-Induced Reduction of Antioxidant
Parameters of Serum as Measured by Serum Superoxide Dismutase Activity, Serum
Glutathione Peroxidase Activity, and Serum Glutathione a , b , c , d

Groups
Antioxidant Parameters

SOD Activity
(U/mL)

GPx Activity
(U/mL)

GSH (nmol/mL)

Control 56.54 ± 7.35 90.34 ± 12.75 154.52 ± 15.21

GA 59.36 ± 7.12 154.26 ± 10.62 160.65 ± 17.06

MTX 15.27 ± 3.17 * 50.07 ± 6.57 * 75.95 ± 8.67 *

MTX +
GA

41.81 ± 5.21 # 73.71 ± 9.67 ## 98.02 ± 10.81 ###

Abbreviations: GA, gallic acid; MTX, methotrexate; SOD, superoxide dismutase;
GPx, glutathione peroxidase; GSH, glutathione.
a Rats were injected with MTX and gavaged with gallic acid as described in Table
1. Values are means ± SD (n = 7).
b Significant change with respect to the control group (* P < 0.001).
c Significant change with respect to MTX group (# P < 0.001, ## P < 0.01, ### P
< 0.05).
d The results show that gallic acid ameliorated the MTX-induced decrease in
SOD, GPx, and GSH.
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4.6. Effect of MTX and Gallic Acid on Serum GSH Content of
Different Rat Groups

The results obtained from the biochemical analysis
indicated that the amount of GSH was 75.95 ± 8.67 in the
MTX group; it was significantly lower compared to the
control group (P < 0.001). The value of this parameter was
98.02 ± 10.81 in the MTX + GA group; it was statistically
significant compared to the MTX group (P < 0.05; Table 2).

4.7. Effect of MTX and Gallic Acid on the Serum Level of IL-6

As shown in Table 3, the amount of serum IL-6 was
311 ± 31.20 pg/mL in the control group, while this value
significantly increased to 530.15 ± 75.11 in the MTX group (P
< 0.001). However, treatment with gallic acid significantly
decreased (P < 0.001) the elevation of IL-6 to 326.12 ± 5.24.

Table 3. Effect of Gallic Acid on Methotrexate-Induced Serum Cytokines Content as
Measured by Serum Interleukin 6 and Serum Interleukin 2 a , b , c , d

Groups
Inflammatory Parameters

IL-6 (pg/mL) IL-2 (pg/mL)

Control 311 ± 31.20 298.87 ± 2.20

GA 177.14 ± 2.01 216.42 ± 42.34

MTX 530.15 ± 75.11 * 402.53 ± 3.12 *

MTX + GA 326.12 ± 5.24 # 245.12 ± 5.71 ##

Abbreviations: GA, gallic acid; MTX, methotrexate; IL-6, interleukin 6; IL-2,
interleukin 2.
a Rats were injected with MTX and gavaged with gallic acid as described in Table
1. Values are means ± SD (n = 7).
b Significant change with respect to the control group (* P < 0.001).
c Significant change with respect to MTX group (# P < 0.001, ## P < 0.05).
d The results show that treatment with gallic acid ameliorates the increase in
inflammatory parameters caused by MTX.

4.8. Effect of MTX and Gallic Acid on the Serum Level of IL-2

The results of the analyzed data showed in the control
group, the amount of serum IL-2 was 298.87 ± 2.20, and it
was statistically significant compared to the MTX group (P
< 0.001; Table 3).

4.9. Histopathological Findings

The light microscopic examination of the duodenum
and jejunum slides of the control group revealed the
normal architecture of the mucous layer in the form of
normal epithelial enterocytes, villus, crypts, and delicate
lamina propria (Figure 2A and B). A similar architecture
was seen in the slides of the GA groups (Figure 2C
and D). However, the observation of the slides of the
MTX group showed severe damage to the mucous layer,
such as shortening and fusion of villi, reduction of the
height of epithelial cells, presence of round cells between
enterocytes, decreased number of crypts, infiltration of

neutrophils in lamina propria, cystic formation, and
decreased height of villus and depth of crypts (Figure 2E, F
and G). Finally, the examination of the slides of the MTX-GA
group displayed almost a normal appearance similar to
that of the control group (Figure 2H and I).

The obtained data are summarized in Table 4. Also,
Table 5 shows the results of morphometric parameters.

5. Discussion

Nowadays, MTX is used for the therapy of a wide range
of neoplastic disorders (35), autoimmune diseases (36),
liver cholestatic disorders (37), induction of abortion, etc.
(18).

The objective of the current study was to examine
the protective effect of GA on MTX-induced intestinal
mucositis in an animal model.

The clinical manifestations of intestinal mucositis
include diarrhea, mucosal ulcerations, and weight loss
(38). In the current study, all of the rats who were injected
with MTX experienced diarrhea and weight loss. Of course,
we did not find a statistically significant relationship
between the weight loss of the MTX group compared with
control ones.

There is evidence that in the progression of mucositis,
a complex series of biological events occurs, starting with
DNA damage and the generation of reactive oxygen species
(ROS) (39). The production of ROS triggers a cascade
of reciprocal biological events through the activation of
various transcription factors, such as nuclear factor-Kb
(NF-κB) (40), which leads to increased transcription of
genes associated with the progression of mucositis. These
genes consist of pro-inflammatory cytokines, such as
interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α
(41). There is concern that cytokines, especially TNF-α
and IL-6, play a central role in intestinal inflammation
(42). Based on in vitro studies, it was found that a low
dose of IL-2 has been considered a key growth factor and
essential to maintain autoimmunity (43). Additionally,
due to the results of a recent clinical trial study conducted
by Zhang et al., it was found that the combination of
IL-2 and MTX in patients with rheumatoid arthritis led
to positive improvements in immunological and clinical
responses and administration of low doses of IL-2 has
novel and practical therapeutic efficacy in these patients
(44). So, we evaluate the amount of IL-2 and IL-6 in
the serum of different study groups. The obtained
results demonstrated the significant elevation of these
pro-inflammatory cytokines in the serum of MTX- the
animal group compared with normal ones, which is in
agreement with Olsen et al. (18).
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Figure 2. A and B, sections of the duodenum and jejunum of the control group notice the normal architecture of the tissues (hematoxylin and eosin (H&E) × 100); C and D,
photomicrographs of the jejunum and duodenum of gallic acid (GA) group that show the normal appearance of villi, tubular crypts arranged deep in the lamina propria; E, F
and G, photomicrograph of small intestine of methotrexate (MTX) group; E, cross sections of the duodenum, notice to fusion and widening of villi (black arrowheads), cysts
(yellow arrowheads) (H&E× 100); F, cross-section of jejunum, intestinal cysts(black arrowheads), blunting and fusion of villi (white arrowheads), notice flattened and round
cells of enterocytes (H&E × 100); G, photomicrograph of lamina propria of the duodenum that contains numerous neutrophils (black arrowheads) (H&E ×400); H and I,
photomicrograph of duodenum (H) and jejunum (I) of GA-MTX group. The architecture of villi, surface epithelium, and intestinal crypts is almost normal. Note the height of
villi, depth of crypts, and absence of cysts in the lamina propria (H&E × 100).

During intestinal mucositis, there is progress of
inflammation, and resident monocytes contribute to the
recruitment of neutrophils to the inflamed site (45). The
histopathological findings of this study showed different
aspects of tissue inflammation, such as dilatation of blood
vessels and accumulation of neutrophils in the lamina
propria of duodenum and jujena of rats exposed to MTX.
Arslan et al. noticed that the aggregation of neutrophils
plays a key role in the potentiating action of MTX-induced
ulceration (46). Also, Kolli et al. reported that MDA and
myeloperoxidase (MPO) are the marker of neutrophil
activation and infiltration that increase in MTX-induced
small intestine mucositis (47).

Also, the findings of the current study demonstrated
that in a rat model of mucositis, there was a loss of villus
architecture, fusion of villi, and loss of intervillous spaces.
Similar findings were reported by some researchers (16, 19,

48, 49). Ali et al. concluded that tissue damage may be
due to the folic acid analog, MTX, inhibiting DNA synthesis
by binding to the DHFR enzyme, which can inhibit the
proliferation of villi enterocytes in the small intestine (50).

In addition to these findings, our study showed
decreased height of villi, reduced number and depth of
crypts, and development of cysts. Some authors linked
this outcome to DNA contents and intestinal mucosal
protein (50, 51), which prevents the propagation of
intestinal crypts duo to their fast division and, finally, the
development of cysts (27).

In the current study, the presence of flat or cubical
epithelial cells with round nuclei on the surface of some
villi was observed, as previously reported by (50), and
could be related to the extensive apoptosis of stem cells
and anti-mitotic effect of MTX in villi (50).

Another finding of the present study was cystic
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Table 4. Results of Semi-quantitative Histopathological Scorings of Duodenum and Jejunum Parts of Different Rat Groups (Mean ± SD) a , b

Fusion of Villus Widening of
Villus

Vascular
Dilatation

Cyst Formation Infiltration of
Neutrophils

Crypt Loss Epithelial Round
Cells

Duodenum

Control 0 0 0 0 0 0 0

GA 0 * 0 * 0.20 ± 0.45 0 0.20 ± 0.45 ** 0 0 *

MTX 2.83 ± 0.41 # 2.83 ± 0.41 # 1.67 ± 1.51 1.67 ± 1.37 2.33 ± 0.82 # 1.00 ± 0.89 2.83 ± 0.82 #

MTX-GA 0.17 ± 0.41 * 0.17 ± 0.41 * 0.67 ± 0.52 0.17 ± 0.41 ** 0.67 ± 0.82 0.50 ± 0.84 0.17 ± 0.41 *

Jejunum

Control 0 0 0 0 0 0 0

GA 0 * 0 * 0 * 0 * 0.60 ± 0.89 0 0 **

MTX 2.83 ± 0.41 # 2.67 ± 0.52 # 2.67 ± 0.52 # 1.83 ± 1.17 # 1.5 ± 0.84 ## 1.67 ± 1.21 ### 1.67 ± 1.21 ##

MTX-GA 0.83 ± 0.75 * ### 0.83 ± 0.75 * ### 0.83 ± 0.75 * ### 0 * 0.17 ± 0.41 *** 0.33 ± 0.82 *** 0.17 ± 0.41 **

Abbreviations: GA, gallic acid; MTX, methotrexate.
a Significant difference in comparison with the MTX group (* P < 0.001, ** P < 0.01, *** P < 0.05).
b Significant difference in comparison with the control group (# P < 0.001, ## P < 0.01, ### P < 0.05).

Table 5. Results of Morphometric Parameters from the Small Intestine of Different
Rat Groups (Mean ± SD) a , b

Villus Height Crypt Depth

Duodenum

Control 184.38 ± 23.73 118.74 ± 12.45

GA 178.70 ± 19.71 * 105.43 ± 10.30 *

MTX 56.50 ± 10.70 # 48.31 ± 16.76 #

MTX-GA 122.15 ± 20.14 * # 133.95 ± 14.64 **

Jejunum

Control 207.75 ± 52.45 103.97 ± 9.87

GA 191.10 ± 26.22 * 93.62 ± 6.37 *

MTX 51.22 ± 20.51 # 41.78 ± 12.51 #

MTX-GA 123.16 ± 28.92 *** ## 135.54 ± 10.61 #

Abbreviations: GA, gallic acid; MTX, methotrexate.
a Significant difference in comparison with the MTX group (* P < 0.001, ** P <

0.05, *** P < 0.01).
b Significant difference in comparison with the control group (# P < 0.001, ##

P < 0.01).

formation in crypts with flat epithelial cells. This result was
consistent with the (52), who explained this by inhibiting
the proliferation of epithelial cells and apoptosis of stem
cells in the crypts. Also, the dissimilarity in injury has been
attributed to the different regional expressions of pro-
and anti-apoptotic factors, such as Blc-2, which amplifies
apoptosis in the crypts of the small intestine (53).

There is evidence that patients receiving
antineoplastic drugs develop oxidative stress (54). Also,
the administration of anti-cancer drugs can lead to a
decrease in the activity of antioxidant enzymes as well as

a decrease in non-enzymatic antioxidants (55). Our study
confirmed that MTX administration induced oxidative
stress. In this regard, the present study showed that MTX
can significantly increase the serum levels of oxidative
stress products such as MDA and NO. In the serum of
MTX group rats, we observed a decrease in the level of
endogenous antioxidants (such as GPx, GSH, and SOD),
which is similar to previous studies (16).

Gallic acid is a colorless or slightly yellow crystalline
compound that is widely used in the food and
pharmaceutical industries (56). The most important
medicinal properties of GA are attributed to its antioxidant
and anti-inflammatory potential (57, 58). Our study
showed that treatment with GA can improve antioxidant
parameters and reduce the level of oxidative stress. These
findings are consistent with previous studies (50, 59, 60).
Khodayar et al. confirmed that GA can effectively reduce
oxidative stress and inflammatory status in mice that have
ulcerative colitis (26).

There is further evidence that GA can inhibit the
secretion of pro-inflammatory mediators, nitrite, NO, and
IL-6 (61). In agreement with these studies, our study
showed that the administration of GA can reduce serum
NO levels in MTX-induced intestinal mucositis. Sen et al.,
in a study on gastric ulcers induced by aspirin and pyloric
ligation in rats, investigated the antiulcer effect of GA. They
indicated that the high levels of MDA in rats were greatly
reduced by receiving GA (62). In accordance with these
results, the current study showed that treatment with GA
can reduce the level of oxidative stress parameters.

According to Ghaznavi et al. (63), Kilic et al. (64),
and Yang et al. (65), the current findings showed that
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administration of GA in rats led to an increase in enzymatic
and non-enzymatic antioxidant levels, including SOD, GSH,
and GPx. Also, Eslamifar et al. reported that the use
of GA significantly improves kidney function with an
ameliorating effect on biochemical and histopathological
indicators (25).

Furthermore, the present study revealed that
treatment with GA can reduce the increase in the
serum content of pro-inflammatory cytokines, including
IL-2 and IL-6, compared to the MTX group. Similarly,
Karimi-Khouzani et al. reported the protective effect
of GA on oxidative stress and inflammatory status of
fluoxetine-induced hepatotoxicity (66).

Miyazono et al. (27), Xian et al. (67), and Southcott
et al. (68) stated that more severe damage was caused by
MTX in the jejunum than in the duodenum (27, 67, 68).
The findings of our study showed that histopathological
parameters are involved in both the duodenum and
jejunum of rats.

In summary, an overproduction of ROS and
unregulated inflammatory responses can disrupt
the balance within the gastrointestinal system. This
disruption can alter the typical microorganism
composition and trigger a series of immediate reactions
that harm cells and tissues, ultimately leading to damage
to the mucous membrane and the development of
mucositis (69). Regarding contextual factors, researchers
should pay more attention to their inhibition with the
aim of treating intestinal mucositis (16). A well-suited
approach would probably focus on addressing
intestinal mucositis at different stages: Utilizing
antibiotics before treatment, employing antioxidants
and anti-inflammatory agents during the acute phase,
and promoting cell growth during the recovery phase.
The researchers suggest that the most promising avenue
for success lies in pursuing combination therapies that
address various aspects of the intricate pathological
processes associated with intestinal mucositis (70).

Experimental data indicated that compounds reach
in polyphenol effectively alleviated chemotherapy
agents-induced injury to intestinal epithelial cells,
restrained the expression of inflammatory factors,
increased cell vitality, and exerted an anti-apoptotic role
on intestinal epithelial cells (71). Recent studies have
indicated that the antioxidant function of GA can regulate
a wide range of inflammatory cytokines, oxidative
stress parameters, and enzymatic and non-enzymatic
antioxidants and has the potential to be developed
as a pharmaceutical agent with good therapeutic and
industrial applications (72).

5.1. Conclusions

Concisely, the current study aimed to assess the
beneficial effects of using GA to reduce intestinal mucositis
induced by MTX in an animal model. Current study proved
that GA can ameliorate various aspects of biochemical,
pro-inflammatory, and histopathological damage. Finally,
it seems there is a need to conduct clinical trial studies to
investigate the effects of consuming a diet rich in GA on
patients suffering from intestinal mucositis.
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