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Abstract

Background: Breast cancer is the second leading cause of death in women. The advent of machine learning (ML) has opened
up a world of possibilities for the discovery and formulation of drugs. It is an exciting development that could revolutionize the
pharmaceutical industry. By leveraging ML algorithms, researchers can now identify disease-related targets with greater accuracy.
Additionally, ML techniques can be used to predict the toxicity and pharmacokinetics of potential drug candidates.
Objectives: The main purpose of ML techniques, such as feature selection (FS) and classification, is to develop a learning model
based on datasets.
Methods: This paper proposed a hybrid intelligent approach using a Binary Grey Wolf Optimization Algorithm and a self-organizing
fuzzy logic classifier (BGWO-SOF) for breast cancer diagnosis. The proposed FS approach can not only reduce the complexity of
feature space but can also avoid overfitting and improve the learning process. The performance of this proposed approach was
evaluated on the 10-fold cross-validation technique and the Wisconsin Diagnostic Breast Cancer dataset. Although the performance
of breast cancer detection is highly dependent on classification accuracy, most good classification methods have an essential flaw
in that they simply seek to maximize the accuracy of classification while ignoring the costs of misclassification among various
categories. This is even more important in classification problems when the initial set of features is large. With such a large number
of features, it is of special interest to search for a dependency between an optimal number of selected features and the accuracy of
the classification model.
Results: In experiments, standard performance evaluation metrics, including accuracy, F-measure, precision, sensitivity, and
specificity, were performed. The evaluation results demonstrated that the BGWO-SOF approach achieves 99.70% accuracy and 99.66%
F-measure, which outperforms other state-of-the-art methods.
Conclusions: During the comparison of the results, it was observed that the proposed approach gives better or more competitive
results than other state-of-the-art methods. By leveraging the power of ML algorithms and artificial intelligence (AI) and the findings
of the current study, we can optimize the selection of natural pharmaceutical products for the treatment of breast cancer and
maximize their efficacy.

Keywords: Natural Pharmaceutical Products, Breast Cancer Diagnosis, Self-Organizing Fuzzy Logic Classifier, Grey Wolf
Optimization

1. Background

Breast cancer is the leading cause of death among

women. Two types of abnormal cells are found in the

breast: Benign and malignant. Due to the prevalence

of thick and fatty tissue and the low ratio of malignant

to benign cells, detecting malignant tumors is very

challenging (1, 2). Classical methods for diagnosing

breast cancer depend on human expertise, resulting

in significant labor, time, and susceptibility to human

error. Physicians use a standard system known as the

breast imaging reporting and data system (BI-RADS) to

communicate the findings and results of mammograms,

categorizing results into groups numbered 0 through 6

(3).
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Artificial intelligence (AI) algorithms can serve as

appropriate models to assist physicians in diagnosing

breast cancer and categorizing patients. The integration

of AI in the field of medical science is of paramount

importance for improving the accuracy and performance

of disease diagnosis (4-6). Promising reports on machine

learning (ML) methods and intelligent techniques in

breast cancer diagnosis research indicate their potential

to enhance diagnostic performance (7, 8). In recent years,

various ML techniques have been applied to the diagnosis

and classification of breast cancer to distinguish between

malignant and benign cases.

Dutta et al. (9) introduced a classification approach

for data mining in medicine. The approach applied

an improved fireworks optimization algorithm with

the best selection strategy (IFWABS) in the multilayer

neural network. The IFWABS approach was tested on

the Wisconsin Diagnostic Breast Cancer (WDBC) dataset,

resulting in a testing accuracy of 96.98%.

Dora et al. (10) suggested a novel classification

approach based on the Gauss-Newton method and

sparse representation technique (GNRBA) for breast

cancer diagnosis. The efficiency of the GNRBA approach

was examined on the UCI WDBC dataset, resulting in a

classification accuracy of 98.48%.

Saygili (11) conducted research on several classification

methods for breast cancer, and the best accuracy was

obtained by the multi-layer perceptron (MLP) neural

network technique (98.41%). Jafari-Marandi et al. (12)

offered a novel breast cancer diagnosis approach based

on a life-sensitive method, a self-organizing map neural

network, and an error-driven learning model (LS-SOED).

This method employed a decision-oriented neural network

based on hybrid supervised and unsupervised learning.

The resulting classification accuracy of LS-SOED was 96.19%

based on the WDBC dataset.

Wang et al. (13) suggested a novel breast cancer

classification method applying the support vector

machine based on weighted area under the curve and

ensemble learning model (WAUCE). The simulation

outcomes revealed that WAUCE achieved a 98.76%

accuracy. Rao et al. (14) developed a new method

based on the coherently integrated artificial bee colony

optimization algorithm and gradient boosting decision

tree technique (ABCODT) to select optimal feature subsets.

Several UCI datasets, including the WDBC dataset, were

subjected to the ABCODT approach. Tests were carried

out using the WDBC dataset, resulting in a classification

accuracy of 97.18%.

Liu et al. (15) employed a new hybrid technique for

breast cancer detection. The information gain method,

simulated annealing algorithm, and genetic wrapper

approach (IGSAGAW) were used to select optimal features,

and a support vector machine based on cost-sensitive

(CSSVM) was used as a classifier in this hybrid technique

(IGSAGAW-CSSVM). The results of experiments on the

UCI-WDBC dataset demonstrated a classification accuracy

of 95.7%.

Lu et al. (16) proposed a novel breast cancer

classification method using a genetic optimization

algorithm and an online gradient boosting model

(GAOGB). On the WDBC dataset, the GAOGB method

achieved a classification accuracy of 94.51%. Abdar et al.

(17) presented a novel breast cancer diagnosis method

by utilizing a two-layer nested ensemble model based

on stacking and voting ensemble techniques and Näıve

Bayes classifier (SV-Näıve-Bayes). The presented method

achieved a classification accuracy of 98.07% when applied

to the UCI WDBC dataset.

Dalwinder et al. (18) suggested a new breast cancer

classification approach using a feature weighting

technique based on the ant lion optimization algorithm

and a multilayer neural network classifier (FW-BPNN).

The approach was tested on the WDBC dataset, resulting

in a classification accuracy of 99.3%. Kumar et al. (19)

presented a novel medical data classification using genetic

programming (GP) based on a new fitness function. The

presented technique was applied to the WDBC dataset and

achieved an accuracy of 97.69%.

Sahebi et al. (20) developed a new generalized

wrapper feature selection (FS) technique based on a new

parallel genetic approach (GeFeS). The performance of

the GeFeS approach was evaluated using the k-nearest

neighbor (KNN) classifier. Experiments conducted with

the WDBC dataset demonstrated an accuracy of 98.51% for

classification.

Khandezamin et al. (21) introduced a novel hybrid

method for breast cancer detection. An FS algorithm

based on logistic regression and a new deep neural

network dubbed group method data handling (GMDH)

were used in the hybrid technique. The experimental

results demonstrated that the GMDH method achieved an
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accuracy of 99.6% on the WDBC dataset.

Kalagotla et al. (22) presented a new method using FS

based on correlation and AdaBoost techniques, along

with a novel stacking technique with multi-layer

perceptron, support vector machine, and logistic

regression (Stacking). The method was tested on the

WDBC dataset, and the classification accuracy was 97.4%.

Wan et al. (23) developed a new hybrid FS approach

considering feature interaction based on neighborhood

rough set-based information theory (NCMI-IFS). The

performance analysis was executed on the WDBC dataset

and achieved a classification accuracy of 98.03%.

Although the performance of breast cancer detection

highly depends on classification accuracy, most good

classification methods have a fundamental flaw: They seek

to maximize classification accuracy while ignoring the

costs of misclassification among various categories. Based

on our experience, the risk of missing a breast cancer case

is unquestionably greater than the cost of mislabeling a

benign case. Moreover, methods tend to overfit the data,

resulting in poor generalization and high computational

costs. Therefore, to increase classification performance

and lower costs, it is crucial to explore a subset of efficient

and optimal features while avoiding overfitting. The

primary concept of FS is to choose a subset of variables

that can significantly improve the time complexity and

accuracy of a classification model. This is particularly

important in classification problems when the initial set

of features is large. With such a large number of features,

it is of special interest to search for a dependency between

the optimal number of selected features and the accuracy

of the classification model. Therefore, it is critical for

researchers to develop an effective algorithm, especially

given the high cost of misdiagnosis in breast cancer

diagnosis.

To carefully avoid overfitting and determine the

relevance of features and class, this study proposes a novel

hybrid approach that is more accurate and intelligent.

The proposed approach significantly improves breast

cancer classification performance and reduces the cost

of misclassification. This approach employs a grey wolf

optimization algorithm and a self-organizing fuzzy logic

classifier (GWO-SOF) to accurately classify breast cancer

data. The performance of the approach was evaluated on

the WDBC dataset.

Grey wolf optimization, as a metaheuristic swarm

intelligence algorithm, can provide the optimal trade-off

between local search and global search. This algorithm

has characteristics that are flexible, simple, and scalable,

leading to favorable convergence. In addition, the SOF

classifier is highly objective and non-parametric. This

implies that data are not subjected to any generating

model with parameters, and without any prior

information and knowledge about the problems, all

associated meta-parameters are immediately obtained

from data. Therefore, the SOF is a highly adaptable

classifier that has demonstrated excellent performance

on a range of problems. On the other hand, the quality

of the selection metrics and techniques has a significant

impact on the performance of learning models that use

the FS process. The GWO and the SOF have many inherent

advantages that can be summarized as follows:

The GWO algorithm offers an optimal trade-off

between local search and global search.

The GWO algorithm has the advantages of having fewer

control parameters and favorable convergence.

The SOF classifier is highly objective and

non-parametric.

The SOF classifier is a highly adaptable classifier.

This work hybridizes the BGWO algorithm and the

SOF classifier to validate the supervised learning model

effectively. The BGWO-SOF hybrid approach efficiently

removes unimportant features from the feature space and

generates an optimal feature subset while preserving the

latent structure of the dataset.

2. Methods

In this section, the materials and methods applied in

the proposed approach are described. First, the breast

cancer dataset used in this work is introduced. Then,

the GWO and SOF classifiers are explained. Finally, the

proposed approach is presented.

2.1. Dataset

The WDBC dataset was obtained from the UCI Machine

Learning Repository and utilized in this work (24). This

dataset is frequently used in medical and breast cancer

studies to evaluate ML approaches, including classification

and FS. The tumor features in the WDBC dataset were

extracted from digital images of fine needle aspirates

(FNAs) of breast masses, describing characteristics of cell
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Table 1. Description of the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset

Attribute
Number

Attributes Comment
Attributes Range

Mean Standard Error Specificity

1 Radius Mean of distances from the center to points on the
perimeter

6.98 - 28.11 0.112 - 2.873 7.93 – 36.04

2 Texture The standard deviation of gray-scale values 9.71 - 39.28 0.36 - 4.89 12.02 – 49.54

3 Perimeter 43.79 - 188.50 0.76 - 21.98 50.41 – 251.20

4 Area 143.50 – 2501.00 6.80 – 542.20 185.20 – 4254.00

5 Smoothness Local variation in radius lengths 0.053 – 0.163 0.002 – 0.031 0.071 – 0.223

6 Compactness Perimeter2 / area - 1.0 0.019 – 0.345 0.002 – 0.135 0.027 – 1.058

7 Concavity Severity of concave portions of the contour 0.000 – 0.427 0.000 – 0.396 0.000 – 1.252

8 Concave point Number of concave portions of the contour 0.000 – 0.201 0.000 – 0.053 0.000 – 0.291

9 Symmetry 0.106 – 0.304 0.008 – 0.079 0.157 – 0.664

10 Fractal dimension “Coastline approximation” - 1 0.050 – 0.097 0.001 – 0.030 0.055 – 0.208

nuclei present in the images. The WDBC dataset comprises

32 features collected from 569 individuals, including (a) an

instance ID number, (b) 30 real-valued features computed

for each cell nucleus, and (c) a class attribute indicating

benign or malignant cases. Each instance has 10 cell nuclei

properties measured, and various statistics of these 10

attributes are computed, such as mean, standard error,

and maximum, resulting in a total of 30 features, as shown

in Table 1. The dataset is distributed with 37.25% and 62.75%

benign and malignant instances, respectively.

2.2. Feature Selection

Machine learning employs methods that allow

the analysis of large amounts of data automatically

(25). Classification algorithms are a type of supervised

learning technique used to identify the category of new

observations based on training data. In classification, a

program learns from a given dataset and then classifies

new observations into predefined classes. The primary

objective of classification is to generalize from the training

patterns to accurately categorize new patterns. The

process of ML for classification begins with prerequisites,

such as datasets, data cleaning procedures, FS techniques,

and classification models (26-28).

Feature selection is a crucial aspect of ML. Feature

selection techniques for classification problems are based

on identifying significant features, and these techniques

can enhance various standard ML methods (29, 30).

Therefore, this process plays a vital role in the development

of learning models. Selecting the appropriate and optimal

feature subset can be challenging due to the complex

and unpredictable interrelationships between features

(31, 32). Since FS is a near-optimal (NP)-hard problem (33,

34), several optimization algorithms have been proposed

to overcome its limitations. These algorithms include

particle swarm optimization (PSO) (35, 36), ant colony

optimization (ACO) (37, 38), whale optimization (WO)

(39, 40), and GWO (41). Feature selection approaches

based on optimization algorithms have the ability to

efficiently explore large search spaces and often yield

results that closely approximate the global solution.

These approaches systematically eliminate unnecessary

and redundant features, which can, in many cases,

enhance the performance of learning models by reducing

uncertainty and overfitting issues (42-44).

2.3. Grey Wolf Optimization Algorithm

Optimization algorithms refer to procedures for

finding near-optimal solutions to multi-dimensional and

complex optimization problems. One such optimization

algorithm is the GWO algorithm. The GWO algorithm

is a promising optimization technique based on swarm

intelligence (SI) (45). This algorithm has garnered the

attention of many researchers across various optimization

domains (46-48). What sets the GWO algorithm apart from

other evolutionary and swarm intelligence techniques

are its distinctive characteristics. The GWO algorithm

requires minimal parameter tuning, effectively balances

global and local search, and demonstrates favorable

convergence. Moreover, it is known for its simplicity of
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implementation, adaptability, and scalability (49).

The GWO algorithm mimics the natural hierarchy of

leadership and hunting mechanisms observed in grey

wolves. It employs four types of grey wolves to simulate

the hierarchy of leadership: Alpha (α), beta (β), delta (δ),

and omega (ω). Grey wolves tend to live in herds and group

environments, with group sizes ranging from a minimum

of 5 to a maximum of 12. The hierarchy among grey wolves

is highly structured, withα representing the best outcome

in mathematical terms, followed by β and δ as the next

level of preferred outcomes. The ω outcome is another

consideration. The GWO algorithm posits that α, β, and

δ wolves lead the hunt (optimization); however, ω wolves

monitor these three leaders (45). The crucial phase of the

hunt occurs when a wolf encircles its prey. Equations are

employed to represent the encircling behavior of the GWO

algorithm.

(1)w (t+ 1) = p (t)−A.Di

Where D i is calculated in Equation the current

iteration is defined as t; p and y are positions of prey and

grey wolves, respectively.

(2)Di = |C.p (t)− w (t) |

Where A and C are coefficient vectors that are

determined using Equations

(3)A = 2 b.r1 − lb

(4)C = 2.r2

Where r1 and r2 are random vectors in the range of [0, 1],

and the lbcomponents are linearly lowered from 2 to 0. The

hunting process is frequently directed by α. Grey wolves,

both β and δ, sporadically attend the hunt. However, the

exact position of the best solution (prey) in the problem’s

abstract search space is unknown. Therefore, it was

believed thatαwould be the best potential solution for the

simulation of wolf hunting behavior; nevertheless, β and

δ would present a better understanding of where the prey

could be found. As a result, the top three findings obtained

were set reserved. Omegas and other search agents must

change their positions to the best search agents’ positions.

Equation is utilized to update the positions of wolves.

(5)w (t+ 1) =
(W1 + W2 +W3)

3

Where W1, W2, and W3 are formulated in Equations to

8, accordingly.

(6)W1 = |Wα −A1 −Diα|

(7)W2 = |Wβ −A2 −Diβ |

(8)W3 = |Wδ −A3 −Diδ|

Where Wα, Wβ , and Wδ are the GWO’s first three most

effective solutions at a certain iteration t, A1, A2, and A3 are

defined in Equation and Diα, Diβ , and Diδ are formulated in

Equations to 11, accordingly.

(9)Diα = |C1.Wα −W |

(10)Diβ = |C2.Wβ −W |

(11)Diδ = |C3.Wδ −W |

where C1, C2, and C3 are formulated in Equation Finally,

according to Equation the parameter lb was reduced (2 - 0)

to emphasize global and local search.

(12)lb = 2− t 2

Maxit

Where t denotes the current number of iterations, and

Maxit denotes the maximum iterations permitted in the

GWO.

2.4. Binary GWO

The binary GWO algorithm has been called BGWO,

where each solution contains a combination of 0’s and 1’s.

Emary et al. proposed a new BGWO algorithm applied for

FS tasks (50). In this algorithm, the wolves that updated

the equation represented a three-position vector function:

Wα, Wβ , and Wδ , which were in charge of inviting each

of the wolves to the best three outcomes. The position of

a specific wolf is included using the GWO principle while

maintaining the binary constraint according to Equation

The scholars employed the update on the GWO method,

which is detailed in Equations to 23. The core update

equation is expressed in Equation

(13)W t+1
i = ”Crossover” (w1.w2.w3)

Where w1, w2, and w3 binary vectors reflect the

influence of a wolf’s movement toward α, β, and δ grey

wolves in order. w1, w2, and w3 vectors are computed by

Equations and 20, respectively.

(14)W t+1
i =


1 if

(
wdα + stepbdα

)
≥ 1

0 otherwise
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where wdα is the α wolf position in dimension d,

and stepbdα is a binary step in dimension d that can be

determined in Equation

(15)stepbdα =


1 if stepbdα ≥ urand

0 otherwise

where urand is a random number generated from

a standard uniform distribution in the range (0,1), and

stepbdα is the dimension d’s continuous-valued step size

that can be computed using the sigmoidal function as in

Equation

(16)stepbdα =
1

1 + e−10(Ad1Didα−0.05)

whereAd1 andDidα are determined by Equations

(17)wd2 =


1 if

(
wdβ + stepbdβ

)
≥ 1

0 otherwise

wherewdβ is theβ wolf position vector in dimension d,

and stepbdβ is a binary step in dimension d, which can be

determined as in Equation

(18)stepbdβ =


1 ifstepbdβ ≥ urand

0 otherwise

where urand is a random number generated from

a standard uniform distribution in the range (0,1), and

stepbdβ is the dimension d’s continuous-valued step size

that can be computed using the sigmoidal function as in

Equation

(19)stepbdβ =
1

1 + e
−10

(
Ad2Di

d
β
−0.05

)

whereAd2 andDidβare determined by Equations

(20)wd3 =


1 if

(
wdδ + stepbdδ

)
≥ urand

0 otherwise

wherewd3 is theδwolf position vector in the dimension

d, and stepbdδ is a binary step in dimension d, which can be

determined as in Equation

(21)stepbdδ =


1 if stepbdδ ≥ urand

0 otherwise

where urand is a random number generated from

a standard uniform distribution in the range (0,1), and

stepbdδ is the dimension d’s continuous-valued step size

that can be computed using the sigmoidal function as in

Equation

(22)stepbdδ =
1

1 + e
(−10(AdδDidδ−0.05)

where Adδ and Didδ are determined by Equations A

simple technique of stochastic crossover is used in each

dimension to crossover w1, w2, and w3 outputs by Equation

(23)wd =



wd1 if rad <
1
3

wd2 if < 1
3
rad < 2

3

wd3 otherwise

2.5. Self-Organizing Fuzzy Logic

Gu et and Angelov introduced a novel classifier

model based on SOF (51). The SOF classifier utilizes

non-parametric statistical operators to objectively reveal

essential data patterns, even in the absence of empirically

acquired data samples. It identifies local peaks within

the multi-modal data distribution to serve as prototypes.

Additionally, the SOF classifier is highly objective and

non-parametric. This means that it does not rely on a

predefined model with parameters. Instead, it derives all

associated meta-parameters directly from the data itself.

Depending on the complexity of the problem and the

availability of computational resources, the SOF classifier

can address issues at various levels of granularity or detail.

Furthermore, it supports both online and offline learning

and can classify data using various dissimilarity/distance

criteria. Therefore, the SOF is a versatile classifier known

for its excellent performance across a range of problems.

In this paper, the offline learning mode of the SOF classifier

will be utilized.

The SOF classifier’s offline method involves

independently detecting prototypes for each class and

constructing a zero-order fuzzy rule of the AnYa type

based on the identified prototypes for each class (in the

structure of Equation

The AnYa-type fuzzy rule-based scheme was introduced

in (52) as an alternative approach to the commonly used

fuzzy rule-based schemes, such as Takagi-Sugeno (53) or

Mamdani (54) models. In comparison to the two previous

6 Jundishapur J Nat Pharm Prod. 2023; 18(4):e142058.
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models, the pattern component (IF) in AnYa-type fuzzy

rules is streamlined into a more concise, objective, and

non-parametric vector structure without requiring the

definition of ad-hoc membership functions, as needed in

the two aforementioned predecessors. The following is the

form of a zero-order fuzzy rule of the AnYa type:

If (xin ∼ pro1) OR (xin ∼ pro2) OR
(
xin ∼ proN

)
THEN (class )

(24)

Where xin signifies vector of input and “˜ ” signifies

similarity, which can also be considered a fuzzy degree of

membership/satisfaction (55); proi (i=1,2,..., Np) represents

the class’s ith prototype; Np is the number of prototypes

discovered from the data samples of this class. Different

strategies, such as “fuzzily weighted average”, might be

used to determine the label for a specific data sample.

The fuzzy rule training procedures of separate

classes will have no effect on each other. We will

suppose for the remainder of this section that

the training procedure is conducted using data

samples from the cth class (c=1,2,..., C) indicated by

{x}ckc = {xc1, xc2, . . . , xckc} ({x}
c
kc ⊂ {x}k),

and the frequency of occurrence and the

associated unique data sample set are denoted,

respectively, by {u}cUck =
{
uc1, u

c
2, . . . , u

c
Uck

}
and

{f}cUck =
{
f c1 , f

c
2 , . . . , f

c
Uck

}
where Kc is the number of

data samples with {x}ckc ,U ck is the number of unique data

samples of the cth class. Considering all the classes, we

haveK =
∑C
c1K

c = k and
∑C
c1 U

c
k = Uk .

Prototypes are found using the densities and

mutual distributions of data samples in the method.

To begin with, multi-modal densities DMM
kc (uci ) =

f ci

∑kc

l=1

∑kc

j=1d
2(xcl ,x

c
j)

2kc
∑kc

j=1d
2(xci ,x

c
j)

(i = 1, 2, . . . , U ck) (52, 56) at all

the samples of unique data in {u}cUck are computed

DMM
k (ui) = fiDk(ui) = fi

∑k
i=1πk(xi)

2kπk(ui)
i =

1, 2, . . . , Uk). Then, in a list defined by {r}, the data

samples are ordered according to multi-modal density

values and their reciprocal distances.

By discovering the sample of data with the largest

multi-modal density, r1 =
argmax(DMM

kc (uci ))

i = 1, 2, . . . , U ck

,

the first element of list {r} is recognized (r1). Then,

the data sample was determined as the second element

(r2) that is closest to r1 in terms of distance: r2 =

argmin(d(r1, u
c
i )

i = 1, 2, . . . , U ck − 1

. The minimal distance to r2 is

used to identify the third element of list {r}, indicated by

r3.

The entire list{r} is built by repeating the procedure

until each of the data samples has been chosen, and based

on the list{r}, the multi-modal densities of {u}cUck are

ordered, indicated byDMM
kc (r) (57, 58).

It is important to note that after a data sample is

selected into list{r}, it cannot be selected for a second

time.

Prototypes, indicated by {p}0 are then

recognized as the local maximum of the ordered

multi-modal densities,DMM
kc (r), by condition one:

Condition 1:

IF
(
D
MM
kc (ri) > D

MM
kc (ri+1) andD

MM
kc (ri) > D

MM
kc (ri−1)

)
THEN

(
ri ∈ {p}0

)
(25)

After all of the prototypes have been recognized with

Equation some fewer representative ones might be found

in{p}0, thereby necessitating the use of a filtering process

to eliminate them from P0.

Before beginning the filtering process, use the

prototypes to attract close data samples to construct data

clouds (55), similar to Voronoi tessellation (58):

(26)
Winning prototype

= argmin
(
d (xi, p) ; xi ∈ {x}ckc , p ∈ {p}0

After all the clouds of data are generated around

the available prototypes {p}0, one can acquire the data

cloud centers Indicated by {ϕ}0, and the multi-modal

densities at the centers are computed by DMM
k (ui) =

fiDk (ui) = fi
∑k
i=1πk(xi)

2kπk(ui)
i = 1, 2, . . . , Uk) as

DMM
kc (ϕi) = SiDkc (ϕi), where ϕi ∈ {ϕ}0; Si is the

ith data cloud’s support.

Following that, for each data cloud, supposing the ith

one (ϕi ∈ {ϕ}0), the set of the centers of its neighboring

data clouds, indicated using ϕneighboringi , are identified

by Condition two:

Condition 2:

(27)IF
(
d2 (φi, φj) ≤ Gc,lKc

)
THEN

(
φi ∈ {φ}neighboringj

)
Jundishapur J Nat Pharm Prod. 2023; 18(4):e142058. 7
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Where (ϕj ∈ {ϕ}0, ϕi 6=ϕj ; Gc,lkc is described as the

average radius of the local influential region surrounding,

which corresponds to the Lth granularity level (L=1,2,3,...)

and is produced from the cth class data based on an offline

mode. Finally, the most representative prototypes of the

cth class, indicated by {p}c, are chosen from the centers of

the available data clouds that fulfill Condition 3 (58):

Condition 3:

(28)IF

DMM
kc (φi) > max

φ∈
{{φ}}neighboring

j

DMM
kc (φ)


THEN (φi ∈ {p}c)

In the end, the representative prototypes of the cth

class{p}c are recognized, the fuzzy rule of AnYa type might

be constructed as follows, where Nc denotes the number of

prototypes in {p}c:

(29)If (x ∼ pc1) OR (x ∼ pc2)OR (x ∼ pcNc)

THEN (class c)

2.6. The Hybrid Intelligent Method

Taking into consideration the advantages of BGWO and

SOF and the importance of breast cancer classification, this

study proposes an intelligent approach for distinguishing

benign from malignant breast cancers. In the proposed

approach, BGWO acts as an FS technique to select the

effective and optimal features; nevertheless, SOF functions

as the classifier to evaluate the performance of these

optimal features. The procedure of the proposed approach

(BGWO-SOF) is described below.

The procedure begins with normalizing the values

of the WDBC dataset and initializing the parameters for

the BGWO algorithm. Then, the K-fold cross-validation

technique is employed (with K = 10) to assess how

effectively the classification approach can predict the

tumor characteristics of an unknown instance. For each

fold, the dataset is divided into 10 equally sized subsets.

Consequently, in each fold, 9 subsets serve as the training

data (90% of the dataset); however, 1 subset (10% of the

dataset) is reserved for testing purposes.

In each fold, the algorithm executes the optimization

process by generating an initial population of candidate

solutions (i.e., individuals) within the search space. Each

position of an individual is represented as a vector with N

elements, where N is the number of features in the dataset.

A 0 value indicates that a certain feature is not selected;

nonetheless, a 1 value indicates that the related feature is

selected. Each individual in the feature space constitutes a

set of candidate features. The BGWO solution is depicted in

Figure 1 (for example, N = 10).

Then, the fitness for each solution (X i ) is calculated.

Because the approach’s primary goal is to improve

the performance of the classification, the quality of a

solution is determined by two key criteria: The number

of BGWO-selected features in the solution and the SOF

classifier’s error rate. Therefore, the optimal solution

is a combination of features with the fewest number

of selected features and the highest performance of

classification. In this paper, the fitness function in

Equation by the SOF classifier is applied to evaluate the

quality of the features selected by the BGWO.

(30)Fitness = ωSOFError + φ
|f |
|F |

Where SOFError the SOF’s error rate on the WDBC

dataset applying optimal selected features. F is the number

of the complete set of features in the cancer breast

dataset, and f is the number of the selected features in

the solution. ω ∈ (0,1) and ϕ =1-ω are balance factors

between SOFError and the size of selected features to

control the importance of feature space reduction and

classification performance. The ϕ is equal to 0.05 in the

present experiments.

At each iteration, the fitness or classification error

rate of the new solution is compared to the fitness of the

previous solution, and if it shows an improvement, the

new solution is chosen. The process is repeated until the

total number of iterations reaches a certain limit called

Maxit. Finally, the sets of the selected features are used in

the SOF learning model.

This procedure will be repeated until all of these

subsets apply for both the training and testing phases.

Finally, the evaluation metrics results from the 10

iterations are averaged to produce reliable statistical

results. Figure 2 shows a flowchart of the proposed

approach.

3. Results

This section presents the experimental setup,

including the dataset and parameter settings, evaluation

8 Jundishapur J Nat Pharm Prod. 2023; 18(4):e142058.
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Figure 1. Solution representation of feature selection

metrics, and details of the experiment’s execution and

results analysis, to verify and examine the performance of

the proposed approach.

3.1. Experimental and Parameter Settings

This study evaluated the performance of BGWO-SOF

using the WDBC breast cancer dataset. For the

experimental executions, this study utilized an Intel(R)

Core (TM) i5 CPU 8250U 1.6GHz with 8 GB of RAM, running

MATLAB 2018 on a Windows 10 (64-bit) operating system.

The BGWO-SOF was executed with a population size of 20.

The approach was formulated as an optimization problem,

and BGWO was run for 50 iterations. In the SOF classifier,

the Euclidean distance was employed as a dissimilarity

metric with a granularity level equal to 12. To prepare

for experimentation, the values from the WDBC dataset

were normalized. Subsequently, a 10-fold cross-validation

technique was employed to assess the performance of the

proposed approach.

3.2 Evaluation Metrics

This work focused on a two-class classification

problem, where a classifier produces two discrete results:

Negative and positive. The experiments were conducted

on the WDBC dataset, resulting in four possible outcomes

in the confusion matrix, as shown in Figure 3. When

a positive instance is correctly classified as positive, it

is a true positive (TP). Conversely, a false negative (FN)

occurs when a positive instance is incorrectly classified as

negative. Similarly, when a negative instance is correctly

classified as negative, it is a true negative (TN); however, an

incorrect classification of a negative instance as positive is

a false positive (FP).

In the WDBC dataset, patient instances with benign

tumors are labeled as 0 (negatives); however, those

with malignant tumors are labeled as 1 (positives).

True negatives are instances where the actual class was

negative, and the expected class was also negative. True

positives are instances with a positive current class and

a positive expected class. False negatives occur when a

record’s true class is positive but is expected to be negative;

nevertheless, FPs occur when the record’s actual class is

negative; nonetheless, the expected class is positive. When

dealing with cancer diagnosis results, minimizing FNs is

crucial.

This study employed classification performance

metrics, including accuracy, precision, recall (also known

Jundishapur J Nat Pharm Prod. 2023; 18(4):e142058. 9
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Figure 2. Flowchart of the proposed approach

as sensitivity), F-measure, Matthews correlation coefficient

(MCC), and specificity, for the evaluation and comparison

of the proposed approach on the WDBC dataset. Accuracy

measures the percentage of times a classifier produces

correct results. The precision determines how accurately

a classifier predicts a positive pattern (yes). Recall, also

known as sensitivity or true positive rate, indicates how

well a classifier predicts a pattern’s identity. Specificity

measures the frequency at which a classifier predicts

non-patterns (no). The F-Measure is the harmonic average

of recall and precision. Matthews correlation coefficient

assesses the quality of binary classifications and is a more

reliable statistical rate than balanced accuracy. It produces

a high score only if the prediction performs well in all four

confusion matrix categories in proportion to both the

size of positive and negative elements in the dataset. The

following formulas are used to calculate the evaluation

metrics:

The trade-off between the FP rate (1-specificity) and

the TP rate (sensitivity) is depicted by a receiver operating

characteristic curve (ROC curve). The ROC curve is a

graphical diagram that illustrates how the diagnostic

capacity of a binary classifier system changes with its

discrimination threshold. Classifiers that yield curves

closer to the top-left corner indicate better performance.

The ROC curve does not depend on the class distribution,

10 Jundishapur J Nat Pharm Prod. 2023; 18(4):e142058.
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Figure 3. Confusion matrix in a two-class classification

making it useful for evaluating classifiers predicting rare

events.

3.3. Experimental Results

The first experiment evaluates the performance of

the present proposed approach (BGWO-SOF) and the SOF

classifier without feature selection capability (SOF-WFS).

The classification ability of the method is assessed using

10-fold cross-validation. Table 2 shows the experimental

results as the average of the 10-fold cross-validation

outcomes. Table 2 shows that by using BGWO-SOF,

classification accuracy, and other metrics have improved

dramatically, with the BGWO-SOF approach outperforming

the SOF-WFS method. The average accuracy for the

SOF method was 80.54%; however, the best accuracy for

BGWO-SOF is 99.702%; nevertheless, the number of features

was reduced by approximately 64%. Since the 10-fold

cross-validation method was applied in this study, the ROC

curve is generated from 10 folds. Figure 4 illustrates the

ROC curve for the 10 folds, demonstrating the classifier’s

efficiency and its capability to distinguish between classes.

Figure 5 presents the number of selected features by

the proposed approach in each iteration. The proposed

approach selects the best and optimal subset of features,

reducing the feature count by 62% in the FS process. Figure

6 indicates the frequencies of the selected features using

the BGWO-SOF approach on the WDBC dataset over 10

iterations.

4. Discussion

In this study, the BGWO algorithm was combined with

the SOF classifier to validate the supervised learning model

effectively. The BGWO-SOF hybrid approach can efficiently

eliminate unimportant features from the feature space

and generate an optimal feature subset while capturing

the latent structure of the dataset. The quality of the

selection metrics and techniques significantly impacts

the performance of learning models utilizing the FS

process. To demonstrate the effectiveness of the proposed

approach, the BGWO-SOF findings (average metric values)

were compared to several recently published approaches

Jundishapur J Nat Pharm Prod. 2023; 18(4):e142058. 11
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Table 2. Experimental Results (%) of Binary Grey Wolf Optimization-Self-Organizing Fuzzy Logic Classifier (BGWO-SOF) and SOF Classifier Without Feature Selection (SOF-WFS)
Methods

Method Accuracy Sensitivity Specificity Precision F-measure MCC

SOF without feature selection 80.54 85.33 72.34 80.27 82.60 78.13

BGWO-SOF (feature selection) 99.702 99.681 99.679 99.646 99.658 98.973

Abbreviations: MCC, matthews correlation coefficient; BGWO-SOF, binary grey wolf optimization-self-organizing fuzzy logic classifier
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Figure 6. Frequency of selected features

in the field of FS and breast cancer classification. This study

examined articles in the literature that utilized the same

dataset (WDBC) and evaluation metrics (8, 12-15, 17-23, 59)

Table 3 shows the results of this comparison. In terms

of classification accuracy, the results demonstrated that

the proposed approach is more accurate and robust than

state-of-the-art methods. Although classification accuracy

is highly important for breast cancer detection, many

good classification methods have significant drawbacks

in that they aim solely to maximize classification accuracy,

often ignoring the costs associated with misclassification

across different categories. Evaluating a learning model’s

performance solely based on classification accuracy

might not indicate its superiority. As shown in Table 3, to

further assess the likelihood of class imbalance and its

impact on accuracy, this study examined metrics such as

recall, precision, F-measure, and specificity. The average

F-measure value, close to 1 (0.99742), indicates that the

proposed approach has a very low number of FP and FN,

signifying excellent precision and recall percentages.

Additionally, the average MCC value (close to 1) suggests

that both classes are predicted effectively. Figure 7 depicts

comparisons between the present study’s approach’s

results and the findings of previous research. The results

demonstrated that the proposed approach outperforms

other state-of-the-art methods in all evaluation metrics.

In general, the results of the proposed approach

are satisfactory for all the evaluation metrics. The

evaluation results indicated that the proposed hybrid

approach can not only effectively reduce the feature space

dimensions but also ensure the efficiency and acceptable

performance of the classification model. The experimental

and comparison results for all the evaluation metrics

demonstrate that the proposed approach outperforms

other well-known methods in classification.

Since we used the standard WDBC dataset for this

study, there was no access to the BI-RADS stages of cases in

this dataset. Therefore, only two classification levels were

Jundishapur J Nat Pharm Prod. 2023; 18(4):e142058. 13
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Table 3. Comparison of Results with State-of-the-art Methods

Variables LS-SOED
(12)

WAUCE
(13)

ABCoDT
(14)

IGSAGAW-CSSVM
(15)

GAOGB
(8)

SV-Näıve-Bayes
(17)

FW-BPNN
(18)

GP (19) GeFeS
(20)

GMDH
(21)

Stacking
(22)

NCMI IFS
(23)

ESO-GSO
(59)

BGWO-SOF

Accuracy 96.19 97.68 97.18 95.7 94.28 98.07 98.37 97.69 98.51 99.60 97.4 98.03 98.95 99.702

Recall 94.75 - - 93.11 - - 96.03 98.1 99.53 92.5 - 96.96 99.681

Specificity - 99.49 - - 93.20 - - 97.02 - - - - - 99.679

Precision - - - - - - 95.03 99.3 99.53 96.2 - 100 99.646

F-measure - - - - - - - 95.02 98.7 99.53 94.2 - 96.96 99.658

MCC - - - - - - - - - - - - - 98.973

Abbreviations: Life-Sensitive Self-Organizing Error-Driven (LS-SOED); Weighted Area Under the Receiver Operating Characteristic Curve Ensemble (WAUCE); artificial bee colony and gradient boosting decision tree algorithm (ABCoDT);
information gain directed simulated annealing genetic algorithm wrapper (IGSAGAW); cost sensitive support vector machine (CSSVM); genetic algorithm-based online gradient boosting (GAOGB); stacking and vote (SV); back-propagation
neural networks (FW-BPNN); genetic programming (GP); generalized feature selection algorithm (GeFeS); group method data handling (GMDH); interaction feature selection algorithm based on neighborhood conditional mutual
information (NCMI IFS); eagle strategy optimization (ESO); gravitational search optimization (GSO); binary grey wolf optimization algorithm and a self-organizing fuzzy logic classifier (BGWO-SOF); matthews correlation coefficient
(MCC).

considered: Benign and malignant. For future studies,

it is recommended to use datasets of real patients with

specific tumor grades (BI-RADS) to extract features for each

BI-RADS category and evaluate the FS and classification

performance for each of them. Furthermore, future

studies can include more patient characteristics, such as

demographic features, to create more accurate models.

It is important to note that, despite using the WDBC

dataset from the UCI Machine Learning Repository, the

proposed approach does not have any specific limitations

for testing on real datasets. In practice, when using a

real dataset, the following operations must be taken into

account to ensure a clean dataset:

Features must be extracted from real samples.

Valid samples must be separated, and damaged or

invalid samples must be removed.

An expert doctor must classify the data samples as

benign or malignant.

4.1. Conclusions

Breast cancer ranks among the leading causes of

mortality worldwide, particularly among women. This

pressing issue has prompted extensive research in the

field of medicine. The primary objective of this study

was to introduce an intelligent approach to breast cancer

detection, with the aim of aiding clinical practitioners in

making more informed decisions in the future.

In this paper, we proposed a novel hybrid intelligence

approach that combines the GWO algorithm with the

SOF classifier. The performance of this hybrid approach

was assessed using the WDBC dataset and a stratified

10-fold cross-validation. Various standard performance

evaluation metrics, including accuracy, F-measure,

precision, sensitivity, and specificity, were employed

in the experiments. Upon comparing the results, it
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Figure 7. Accuracy comparison of the proposed approach to state-of-the-art
methods (abbreviations: Weighted area under the receiver operating characteristic
curve ensemble (WAUCE); artificial bee colony and gradient boosting decision
tree algorithm (ABCoDT); information gain directed simulated annealing genetic
algorithm wrapper (IGSAGAW); cost sensitive support vector machine (CSSVM);
genetic algorithm-based online gradient boosting (GAOGB); Back-propagation
neural networks (FW-BPNN); genetic programming (GP); generalized feature
selection algorithm (GeFeS); group method data handling (GMDH); interaction
feature selection algorithm based on neighborhood conditional mutual
information (NCMI IFS); eagle strategy optimization (ESO); gravitational search
optimization (GSO); binary grey wolf optimization algorithm and a self-organizing
fuzzy logic classifier (BGWO-SOF)

was observed that the proposed approach consistently

yielded superior or competitive results when compared

to other state-of-the-art methods. In the future, it is

planned to further develop and expand this approach by

incorporating additional optimization algorithms and

classification techniques.
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