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Abstract

Background: The Artemisia genus is well-known for its medicinal properties, particularly in Iranian traditional medicine.
Artemisia biennis, a species within this genus, is widely distributed across Iranian rangelands.

Objectives: This study aimed to evaluate the cytotoxic activity and chemical composition of essential oils (EO) isolated from the

aerial parts of A. biennis in Iran at different growth stages.

Methods: The aerial parts of A. biennis from northeast Iran were collected during June (early vegetative stage), July (pre-

flowering stage), August (full-flowering stage), and October (late vegetative stage). The essential oils (EOs) of the A. biennis

species were extracted by hydro-distillation using a Clevenger-type apparatus and analyzed using gas chromatography–mass

spectrometry (GC/MS). The cytotoxic activity of the EOs against normal fibroblasts, MCF-7, and HT-29 cell lines was evaluated

using the MTT assay.

Results: Data from GC/MS analysis revealed that (Z)-nerolidol (22.62 - 54.4%), (E)-β-farnesene (6.89-16.38%), and (Z)-tonghaosu

(12.33 - 18.61%) were the most abundant chemical constituents. The essential oil (EO) of A. biennis was characterized by a high

content of oxygenated sesquiterpenes, with (Z)-nerolidol being the main constituent identified. Based on the MTT assay, the EO

of the plant species collected in June exhibited the most potent cytotoxicity against MCF-7 (IC50 = 2.84 ± 0.15 µg/mL) and HT-29

cell lines (IC50 = 2.41 ± 0.2 µg/mL).

Conclusions: The growth stage of A. biennis affects EO yields, the composition of extracted secondary metabolites, and cytotoxic

activity. A. biennis EOs can be considered potential sources of cytotoxic phytochemicals.
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1. Background

The Artemisia genus (family Asteraceae) contains

more than 498 species worldwide, primarily distributed

across Europe, Asia, and North America (1, 2). In Iran, this
genus includes 34 species that grow wild in dry or semi-

dry habitats (1, 2). The phytochemicals reported from
Artemisia include flavonoids, coumarins, sterols,

polyacetylenes, monoterpenes, sesquiterpenes, and

sesquiterpene lactones (1-4). Several Artemisia species

have been documented to possess antiviral, anti-

inflammatory, anti-helminthic, antihepatotoxic, anti-
malarial, antiseptic, cytotoxic, and antispasmodic

activities (5-7). Therefore, identifying the secondary
metabolites in these species could open new avenues for

understanding the biological effects and nutritional

properties of this herb.

Artemisia biennis, known as "Dermaneye dosaaleh" in
Persian, is distributed across various regions of Iran (8).

Previous studies in Iran have reported the presence of α-
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pinene (10.2%), 1,8-cineole (10.1%), Artemisia ketone (11.4%),

and camphor (24.6%) as the main components of A.

biennis essential oil (EO) (9). Lopes-Lutz et al. identified
nearly 37 compounds in A. biennis EO from Canada, with

the highest percentages attributed to (E)-β-farnesene
(40%), (Z)-β-ocimene (34.7%), and (Z)-en-yn-dicycloether

(11%) (10). Due to its high activity against dermatophytes,

Cryptococcus neoformans, Fonsecaea pedrosoi, and
Aspergillus niger, A. biennis EO could be a promising

candidate for skin and hair care formulations (10).
Additionally, the EO of A. biennis has demonstrated

antibacterial activity against Staphylococcus  aureus,

Lactobacillus plantarum, and Escherichia coli (11). The EO
from the aerial parts of A. biennis also showed

significant analgesic effects in male rats, potentially
involving the modulation of glutamatergic mechanisms

through opioid systems (12).

Mohammadi et al. demonstrated that the vegetative

state could quantitatively and qualitatively affect the EO
of A. absinthium (13). The cytotoxic effects of

dichloromethane extract fractions from A. biennis

against MCF-7 and human prostate carcinoma (PC3)
cancer cell lines have been previously reported,

suggesting this plant as a potential source of cytotoxic
phytochemicals (7). Therefore, a phytochemical study on

the aerial parts of A. biennis, a plant growing in Iran,
seems reasonable to investigate its ecological

importance, nutritional value for animal feed, and to

complete the study on the secondary metabolites of its
EO.

2. Objectives

While A. biennis essential oils (EOs) have been studied
for their biological properties, research specifically
focusing on the effect of different growth stages on the

chemical composition of the EO and its toxicity
performance has not been previously conducted.

Therefore, the primary aim of this study was to identify
the chemical composition of EOs isolated from the

aerial parts of A. biennis during the early vegetative

stage, pre-flowering stage, full-flowering stage, and late
vegetative stage from the mountainous areas of Iran for

the first time. Additionally, this research aimed to
evaluate the cytotoxicity of the obtained A. biennis EOs at

different growth stages against various cancerous cell

lines.

3. Methods

3.1. Materials

The cell culture media and supplements, including

Dulbecco’s modified Eagle’s medium (DMEM-F12), fetal

bovine serum (FBS), 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT), and penicillin-

streptomycin, were obtained from Bonyakhteh (Iran).
The human colon adenocarcinoma (HT-29), breast

adenocarcinoma (MCF-7), and normal fibroblast cell

lines were obtained from the Pasteur Institute (Tehran,
Iran).

3.2. Preparation of Essential Oils

The aerial parts of A. biennis were collected from the

mountainous areas of Jaghargh (36°18′43″N 59°19′21″E),

Mashhad, Iran, in June (early vegetative stage), July (pre-
flowering stage), August (full-flowering stage), and

October (late vegetative stage) of 2021. The samples were
identified and an herbarium specimen (No. 13605) was

deposited in the herbarium of the School of Pharmacy
at Mashhad University of Medical Sciences (Mashhad,
Iran).

The aerial parts of the plant were washed with

deionized water, dried at room temperature, and then

finely powdered using an electric mill. The essential oil
was extracted from the A. biennis powder through

hydro-distillation using an all-glass Clevenger-type
apparatus (14). Thirty grams of plant material were

soaked in 300 mL of distilled water, placed in a glass

flask, and heated for 3 hours at 100°C. Anhydrous
sodium sulfate was used to remove any remaining water

after extraction. The EO was stored in an airtight glass
container at 4°C, and the EO yields were calculated as a

percentage of the dry weight (% w/w). The extraction was
performed three times, and the mixed EOs from each

growth stage were then analyzed by GC/MS.

3.3. Gas Chromatography–mass Spectrometry (GC/MS)
Analysis

Gas chromatography–mass spectrometry analysis

was performed using an Agilent Technologies 7890B GC

System/5977A MSD (USA) equipped with a fused silica
capillary HP-5 column (30 m × 0.25 mm, 0.25 μm film

thickness). Helium was used as the carrier gas at a flow
rate of 1 mL per minute. The process was conducted

under the following conditions: Injection volume of 1 µL
with a split ratio of 1:20, injector temperature set at

280°C, and the oven temperature programmed to

increase from 30°C to 280°C at a rate of 3°C per minute.
Mass spectra were obtained in electron impact (EI+)

mode at 70 eV, with the ion source temperature set at
230°C. Mass spectra were recorded over the 50 - 500

a.m.u. range (15). Retention indices were calculated
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relative to the retention times of n-alkanes (C8-C24). The

EO components were identified by comparing their

Kovats indices with those reported in the literature and
by referencing internal libraries (Wiley, NIST, and Mass

Finder 2.1 GC/MS libraries) (16).

3.4. Cytotoxicity Test

3.4.1. Cell Cultures

The HT-29, MCF-7, and normal fibroblast cell lines
were maintained in DMEM-F12 medium supplemented

with 10% v/v fetal bovine serum, 100 U/mL penicillin, and
100 μg/mL streptomycin at 37°C in a humidified

atmosphere containing 5% CO2. The cells were sub-

cultured two to three times per week (17, 18).

3.4.2. Cytotoxicity Evaluation Using MTT Assay

The MTT assay was used to investigate the toxicity of

the EOs, following a standard method previously
reported (17, 18). A cell suspension with a concentration

of 5 × 103 cells/mL was plated in each well of 96-well

plates, and 100 μL of DMEM-F12 culture medium
containing 10% FBS was added to each well. The plates

were incubated for 24 hours at 37°C, with 90% humidity
and 5% CO2. Various concentrations of the EOs, prepared

through serial dilution (100, 50, 25, 12.5, and 6.25 µg/mL),

were then added to the wells and incubated for an

additional 24 hours. A 1% dimethyl sulfoxide (DMSO)
solution was used as a positive control. The medium was

then replaced with 100 μL of MTT solution (0.5 mg/mL),
followed by a further 4-hour incubation period. After

removing the solution, DMSO was added to dissolve the

formazan product. The color intensity, which is
proportional to the number of living cells, was

measured using an ELISA plate reader (BioTek, ELx800™,
USA) at a wavelength of 570 nm. Each assay was

performed in triplicate, and the mean and standard

error of the mean (SEM) were calculated. The IC50 values

were determined using Prism software.

3.5. Statistical Analysis

Each experiment was performed three times, and the
results were presented as means ± SEM. A one-way
analysis of variance (ANOVA) was used to compare the

differences between means. A probability value of P <
0.05 was considered statistically significant.

4. Results and Discussion

4.1. Phytochemical Analysis

The aerial parts of the Artemisia genus have been used

in Iranian traditional medicine for therapeutic
purposes, primarily because most essential oil

components accumulate in the aerial parts of the plant
(5, 8, 12). Therefore, this study focused on investigating

the EOs of A. biennis aerial parts at different growth

stages. The average EO yields ranged from 0.29 ± 0.08%
in October to 0.5 ± 0.021% in August (Table 1), following

the sequence: Late vegetative stage (0.29 ± 0.08%) < early
vegetative stage (0.36 ± 0.02%) < pre-flowering stage (0.4

± 0.014%) < full-flowering stage (0.5 ± 0.021%). The

highest EO yield was observed in August during the full-
flowering stage of A. biennis, consistent with findings

from Verdian-Rizi et al. (19) regarding Artemisia annua
EO yields. Similar results were also reported by
Mallavarapu et al. (20), Sellami et al. (21), Özgüven et al.

(22), and Rohloff et al. (23) at the full emergence of
flower heads in Artemisia pallens Wall. ex Besser,

Origanum majorana L., Thymus vulgaris L., and
peppermint, respectively. The decrease in EO yield

during the vegetative phase of the plant is likely due to

the partial inactivation of enzymes necessary for the
biosynthesis of specific volatile compounds (21).

Therefore, the timing of plant harvesting plays a crucial
role in achieving maximum EO yield. Various factors

such as the season of harvest, soil pH, plant parts used,
drying conditions, chemotype, genotype, subspecies,

extraction methods, and plant collection location can

impact the final EO yield (5). Previous studies have
documented EO yields of A. biennis species in the range

of 0.3% (10) to 0.42% (9). The EO yields calculated in the
current study exceeded those of other A. biennis

ecotypes.

The GC/MS chromatograms of A. biennis EO are

presented in Figure 1, with the corresponding results
detailed in Table 1. The chemical constituents across four

different collection periods (based on month) were

identified, accounting for at least 96% of the total
composition. The results showed that 35, 30, 11, and 32

total compounds were identified in June, July, August,
and October, respectively. The chemical components of

the analyzed oils were classified into monoterpene

hydrocarbons, oxygenated monoterpenes,
sesquiterpene hydrocarbons, oxygenated

sesquiterpenes, diterpene hydrocarbons, oxygenated
diterpenes, and spiroethers. Qualitative and

quantitative variations in the chemical profile of the EOs

were observed across different harvesting months.
Overall, the chemical composition was dominated by
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Figure 1. The GC/MS chromatogram of the Artemisia biennis essential oil (EO) under various growth stages during June, July, August, and October

oxygenated sesquiterpenes, with oxygenated diterpenes

being a minor fraction.

The chemical diversity of the EO constituents

decreased as the growth stages progressed towards the
full-flowering stage, while the yield of volatile oil

extraction increased inversely. Additionally, during the

first three stages of plant growth, the number of
distinctive and exclusive compounds—those detected in

only one growth stage—also decreased. However, in the
late vegetative stage, all three trends were reversed,

resulting in an increase in the chemical diversity of the

EO constituents, a decrease in the yield of volatile oil

extraction, and an increase in the number of distinctive
and exclusive components.

In all EO samples, oxygenated monoterpenes and

oxygenated sesquiterpenes were present in higher

concentrations than their hydrocarbon counterparts.
The highest level of monoterpenes was recorded in June,

contrasting with the lowest amount observed in August.
Conversely, the highest level of sesquiterpenes was
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Figure 2. Major chemical compounds identified in the essential oil (EO) of Artemisia biennis

recorded in August, while the lowest amount was

observed in October. The content of oxygenated
monoterpenes and sesquiterpenes in October and

August (11.55% and 63.44%, respectively) was higher than

in any other collection months (Table 1). It's important
to note that oxygenated terpenoids, known for their

contributions to fragrance and therapeutic properties,
are considered essential markers for assessing the

quality of EOs (24).

Throughout the four different harvesting times, the

major constituents of A. biennis EO were (Z)-nerolidol,
(E)-β-farnesene, and (Z)-tonghaosu (Figure 2). However,

there were variations in the percentages of these

constituents at each month. The percentage of (Z)-
nerolidol showed only a slight increase from June to July
(41.69% and 41.72%, respectively). In August, the
proportion of (Z)-nerolidol significantly increased to

54.4%, before dropping to its lowest level in October

(22.62%). The level of (E)-β-farnesene was recorded at
14.13% during the early vegetative stage, experienced a

distinct decrease in July (6.89%), and then increased
again during the full-flowering and late vegetative

phases (11.49% and 16.38%, respectively). (Z)-tonghaosu

exhibited its lowest value during the early vegetative
stage (12.33%), followed by a rapid increase during the

pre-flowering stage (18.61%), reaching its highest
proportion compared to other growth stages.

Previous research by Lopes-Lutz et al. (10) identified
(E)-β-farnesene and (Z)-β-ocimene as the major

components in A. biennis EO. Another study by
Nematollahi et al. (9) found camphor (24.6%), Artemisia

ketone (11.4%), and α-pinene (10.2%) as the main

components of A. biennis EOs. The diversity in extracted
secondary metabolites can be attributed to various

environmental factors such as the collection season,

plant age, environmental conditions, and genetic
factors (25, 26).

Investigating the effects of four different harvest
times allowed for the first-time study of EO changes in A.

biennis in Iran. This study revealed a distinctive and
exclusive array of compounds in A. biennis EO compared

to previous research (9, 10). The majority of exclusive

compounds in A. biennis EO were attributed to the June
and October harvests. Seven compounds were unique to

June, including dihydrocarveol (0.83%), cabreuva oxide A
(0.20%), alloaromadendrene (0.81%), β-humulene (0.37%),

α-himachalene (0.68%), valerenol (0.56%), and lyratyl

acetate (0.54%). Similarly, seven distinctive compounds
were identified in the October harvest: O-cymene (0.18%),

β-costol (0.73%), (E, E)-farnesol (0.9%), (Z)-caryophyllene
(0.33%), γ-gurjunene (6.52%), ascaridole (1.50%), and

valencene (0.81%).

The EO harvested in July contained six distinctive

compounds, accounting for 10.94% of the total
composition. These included cyclocopacamphenol

(0.85%), (Z)-α-farnesene (1.18%), α-calacorene (1.19%), γ-

costol (0.76%), β-bisabolene (0.91%), and viridiflorol
(6.05%). During the full-flowering stage, which had the

highest EO yield, two exclusive components with
relatively high proportions were identified: E-α-

necrodol (3.42%) and intermedeol (6.00%).

Nerolidol, which was found in the highest

proportion in the EOs of the current study, is a
sesquiterpene alcohol characterized by a floral odor and

is a prominent component extracted from various

medicinal plants. The wide-ranging pharmacological
activities of nerolidol have attracted significant research

interest, including its reported efficacy in anticancer
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Figure 3. The growth inhibition activity of various concentrations of Artemisia biennis essential oils (EOs) on human normal fibroblast, HT29, and MCF-7 cancer cell lines. Values
were mean ± SEM of at least three independent experiments (n = 3). * P < 0.05, ** P < 0.01, and *** P < 0.001 compared to the control group.

and antitumor effects (27, 28), anti-inflammatory
properties (29, 30), antiulcer activity (31), antimalarial

activity (32), antifungal and antibacterial activity (33-36),
anti-biofilm properties (37), antioxidant benefits (38),

anti-parasitic effects (39, 40), and its role as a skin-
penetration enhancer (41).

(E)-β-farnesene, a linear sesquiterpenoid, is another
important component of the plant's essential oil.

Farnesene is known for a wide range of biological
effects, including antioxidant (42), antibacterial (43),

and antifungal properties (44, 45). Additionally,

farnesene has been employed as an intermediary in the
synthesis of isophytol, the precursor of vitamin E (46).

4.2. Cytotoxicity Results

Colorectal cancer is the third most common cancer

worldwide, ranking third among men and second

among women. Additionally, breast cancer is the most
common cancer in women in 157 out of 185 countries as

of 2022. Notably, recent studies have shown that female
breast cancer has surpassed lung cancer as the most

commonly diagnosed cancer, with an estimated 2.3

million new cases (11.7%), followed by lung (11.4%) and
colorectal (10.0%) cancers (47). Given this context, the

cytotoxic effect of A. biennis EOs on breast and colon

human cancer cell lines was investigated.

In a study conducted by Tayarani-Najaran et al. (48),

the cytotoxic and apoptotic effects of the
dichloromethane extract of A. biennis on the K562 and

HL-60 cancer cell lines were examined. The A. biennis

extract was found to induce apoptosis in human
leukemia cells through a mitochondria- and caspase-

dependent pathway.

The percentage of cell viability after 24 hours of

exposure to different concentrations of the EOs (0, 6.25,
12.5, 25, 50, and 100 μg/mL) was evaluated using the MTT

method, and the results were analyzed with Prism
software (Figure 3). The cytotoxicity effects on cell lines

were found to be dose-dependent. According to Table 2,

the most significant reduction in cell viability across all
concentrations was observed with the EO extracted in

June, demonstrating IC50 values of 2.99 ± 0.23, 2.41 ± 0.2,

and 2.84 ± 0.15 μg/mL against normal fibroblast, HT-29,
and MCF-7 cells, respectively (*P < 0.05).

Generally, the compounds obtained from EOs in June
and August had the highest and lowest proportions of

monoterpenes, respectively. These phytochemicals have
been extensively studied for their potential as
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Table 2. The Calculated IC50 (µg/mL) of Artemisia biennis Essential Oils Was Collected in Four Months on Normal Fibroblast, HT29 and MCF7 Cells. Data Are Presented as Mean ±

SEM

Variables June July August October

Normal fibroblast 2.99 ± 0.23 12.21 ± 0.38 14.96 ± 0.51 7.81 ± 0.36

HT-29 2.41 ± 0.2 5.64 ± 0.57 11.46 ± 0.32 14.12 ± 0.81

MCF-7 2.84 ± 0.15 7.66 ± 0.42 10.5 ± 0.41 5.5 ± 0.28

anticancer agents in various tumor cell lines (49, 50),

primarily by triggering apoptosis through intrinsic
mechanisms, which result from oxidative stress induced

by elevated ROS levels (51). In addition, monoterpenes

have demonstrated cytostatic effects by blocking the cell
cycle and inhibiting cell invasion and migration (51).

There are numerous reports on the cytotoxic effects

of sesquiterpenes. For example, nerolidol—the main

component of the EOs in the current study—suppresses
the growth of bone cancer cells (MG-63) and induces

apoptosis via PI3K/JNK regulation through cell cycle
arrest (52). Many studies have investigated the

anticancer potential of nerolidol (53, 54), particularly its

effects on inhibiting cell growth and reducing cell
proliferation. Lu et al. (55) suggested that nerolidol

suppressed the growth of Glioblastoma multiforme
cells and triggered cell death by modulating the

activities of cell-cycle proteins through the p38 mitogen-

activated protein kinase signaling pathways.

Additionally, (Z)-β-farnesene has shown significant
anticancer potential, as reported by Afoulous et al. (56).

Shaaban et al. (57) demonstrated that Matricaria

chamomilla extracts could inhibit Caco-2 colon cancer
cell migration, with tonghaosu identified as a key
component responsible for this activity.

4.3. Conclusions

This study provided a quantitative and qualitative

investigation of A. biennis EOs across different growth
stages. Regardless of the growth stage, (Z)-nerolidol, (E)-

β-farnesene, and (Z)-tonghaosu were identified as the
major components of the EOs. The EO yields increased as

the plant progressed to the full-flowering stage, with a

subsequent decrease in the late vegetative stage. Based
on the MTT assay results, the EO extracted during the

early vegetative stage exhibited more potent cytotoxic
activity against MCF-7 and HT-29 cells. The IC50 values for

the normal human fibroblast and MCF-7 cell lines

increased as the plant advanced to the full-flowering

stage, but this trend reversed in the late vegetative stage.
Interestingly, the content of oxygenated sesquiterpenes

followed the same rise-and-fall pattern as the cytotoxic

activity, while the trend for oxygenated monoterpenes

exhibited the opposite pattern.
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Table 1. Chemical Composition of Artemisia biennis Essential Oils in Various Growth Stages of Harvest and Their Oil Yield

No. Name June July August October Lopes-Lutz et al. (10) Nematollahi et al. (9)

1 Hexanal 0.1

2 Santolina triene 4.9

3 α-Thujene t a

4 Benzaldehyde 0.2

5 Sabinene 0.1 0.8

6 α-Pinene 0.37 0.31 0.52 0.29 0.2 10.2

7 Camphene 2.9

8 p-Cymene 0.14 0.8

9 O-Cymene 0.18

10 1,8-Cineole 0.85 0.29 10.1

11 Linalool 0.19 0.27 0.18

12 β-Pinene 0.2 t a 1

13 (E)-α- necrodol 3.42

14 Yomogi alcohol 0.13 0.13

15 Limonene 1.69 0.2

16 Limona ketone 0.3 0.13 0.41

17 β-Phellandrene t a

18 Caryophyllene oxide 0.39 0.2

19 Cyclocopacamphenol 0.85

20 Myrtenol 0.9

21 Dihydrocarveol 0.83

22 Photonerol 6.37 3.94 6.8

23 Terpinene-4-ol 0.76 0.46 0.73 1.3 2.6

24 Trans-sabinyl acetate 0.7

25 (E)-β-Farnesene 14.13 6.89 11.49 16.38 40 1.8

26 (Z)-α- Farnesene 1.18

27 Germacrene D 0.4 5.3

28 Cabreuva oxide A 0.2

29 β-selinene 1.8

30 α-selinene 2.9

31 (E)-β-Ionone 2.26 1.41 1.34 2.4

32 α- Calacorene 1.19

33 β- Maaliene 1.49 0.99 0.58

34 δ-cadinene 0.92 1.02 0.48

35 Alloaromadendrene 0.81

36 (Z)-Nerolidol 41.69 41.72 54.4 22.62

37 (E)-Nerolidol 0.45 0.94

38 β-Humulene 0.37

39 (Z)-β-Ocimene 34.7

40 (E)-β-Ocimene 0.7

41 cis-Sabinene hydrate 0.2 1

42 trans-Sabinene hydrate 0.4 0.6

43 Artemisia alcohol 0.1 1.4

44 Artemisia ketone 11.4

45 α-campholenal 0.6

46 Trans-pinocarveol 3.8

47 Camphor 24.6

48 Pinocarvone 3.2
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No. Name June July August October Lopes-Lutz et al. (10) Nematollahi et al. (9)

49 Borneol 2.6

50 Allo-ocimene 0.8

51 (Z)-Myroxide 0.1

52 cis-Verbenyl acetate 0.2

53 Farnesyl acetate 0.71 0.6

54 (Z), (E)-Farnesyl acetate 0.5

55 α-himachalene 0.68

56 β-Costol 0.73

57 γ-costol 0.76

58 τ-Cadinol 0.81 1.13 1.13

59 Aromandendrene 4.68 0.21

60 α-Bisabolol 0.57 1.96 1.01

61 β- bisabolene 0.91

62 (Z), (Z)- Farnesol 0.38 9.77

63 (E), (E)-Farnesol 0.9

64 Valerenol 0.56

65 β-Cyperone 0.34 0.49 0.59

66 Viridiflorol 6.05

67 α-Terpineol 2.12 1.28 0.55 1.51 0.2

68 α-Terpinene 0.1

69 γ-Terpinene 0.33 0.8 0.5

70 (Z)-Caryophyllene 0.33

71 (E)-Caryophyllene 0.41 1.24 0.6 1.6

72 γ-Gurjunene 6.52

73 Hexahydrofarnesyl acetone 0.35 1.11 0.76

74 α- Santalol 1.70 0.3

75 Intermedeol 6

76 (Z)-tonghaosu 12.33 18.61 16.38 17.06 10

77 (E)- tonghaosu 1

78 Tibetin spiroether 0.37 0.41 0.55 0.68

79 Gerany-p-cymene 0.4 0.88 1.01 0.81

80 Phytol 0.18 0.46 0.59

81 Ascaridole 1.5

82 Valencene 0.81

83 Lyratyl acetate 0.54

84 Monoterpene hydrocarbon 2.59 0.45 0.52 0.47

85 Oxygenated monoterpenes 11.24 6.93 3.97 11.55

86 Sesquiterpene hydrocarbon 23.08 11.89 11.49 26.34

87 Oxygenated sesquiterpenes 48.71 56.99 63.44 41.15

88 diterpene hydrocarbon 0.4 0.88 1.01 0.81

89 Oxygenated diterpene 0.18 0.46 0.59

90 Spiro Ethers 12.7 19.02 16.93 17.74

91 Unknown 1.1 3.38 2.64 1.35

92 Oil yield (%w/w) 0.36 ± 0.02 0.4 ± 0.014 0.5 ± 0.021 0.29 ± 0.08 0.3 0.42

a t = trace (≤ 0.05%).


