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Abstract

Background: Inflammation is considered one of the hallmarks of inflammatory diseases. Ursolic acid (UA) may exert

therapeutic effects; however, the anti-inflammatory effects of UA require further study.

Objectives: This study evaluated the effects of UA from Perilla frutescens (L.) Britt. leaves on pro-inflammatory activity induced by

zymosan.

Methods: Ursolic acid was extracted from P.frutescens (L.) Britt. leaves using ethanol, and thin layer chromatography (TLC) and

high-performance liquid chromatography (HPLC) were used for UA analysis. The effect of UA on zymosan-induced cytokine

production was evaluated by enzyme-linked immunosorbent assay (ELISA). Western blotting detected phosphorylation of

extracellular signal-regulated kinases (ERK) 1/2, p38, and p47phox in Raw 264.7 cells. Reactive oxygen species (ROS) were

measured using a specific immunofluorescent dye. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities

were assayed using a luminometer.

Results: Zymosan-induced tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12 p40 in macrophages were significantly

inhibited by UA (30 μg/mL, P < 0.001). In addition, UA (30 μg/mL, P < 0.001) significantly inhibited zymosan-induced

phosphorylation of ERK1/2, p38, p47phox, ROS, and NADPH oxidase in the cells. Importantly, blockade of Dectin-1 using

laminarin, a pure β-glucan, markedly abrogated the UA-mediated inhibition of zymosan-induced production of inflammatory

cytokines, ERK1/2, p38, ROS, and p47phox phosphorylation in macrophages.

Conclusions: Collectively, these data indicate that UA regulates zymosan-induced inflammatory responses and suggest novel

approaches for managing excessive inflammatory responses.
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1. Background

Infectious agents such as fungi, bacteria, or harmful

toxins stimulate the immune system to produce an

inflammatory response to protect the body (1). However,
when this inflammatory process goes beyond balance, it

can cause several diseases, including cardiopathy,

neuroinflammation, diabetes, and sepsis (2).

Zymosan is a pro-inflammatory agent extracted from
the cell wall of Saccharomyces cerevisiae (3). Structurally,

zymosan is a glucan that binds to glucose (4). In the

innate immune system, zymosan is recognized by the

Dectin-1 receptor, leading to an inflammatory process

that increases tumor necrosis factor (TNF)-α, interleukin

(IL-6), IL-12p40, and reactive oxygen species (ROS)

production (3). This can lead to several inflammatory

diseases, neurological diseases, cardiovascular issues,
and metabolic disorders. Moreover, zymosan has been

demonstrated to mediate severe acute and chronic
inflammation, followed by shock and multiple organ

dysfunction syndrome (MODS) (5, 6).

Perilla frutescens is an herb used as medicine and

food, with beneficial parts including stems, leaves, and

seeds (7). The juice of P.frutescens leaves is used to treat

https://doi.org/10.5812/jjnpp-148153
https://crossmark.crossref.org/dialog/?doi=10.5812/jjnpp-148153&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.5812/jjnpp-148153&domain=pdf
mailto:nguyenquanghuy@vnu.edu.vn


Quang Huy N et al.

2 Jundishapur J Nat Pharm Prod. 2024; 19(3): e148153.

snake toxicity, ulcers, cough, and diabetes in Chinese

medicine (8). This medicinal plant exhibits a wide range

of biological activities, such as anti-inflammation, anti-
cancer, anti-obesity, antioxidant, anti-osteoporosis, anti-

ulcer, and other activities (8). Studies have reported that
UA was isolated from the leaves of P.frutescens (8).

Specifically, UA has many important pharmacological

properties and may be involved in several signaling
pathways to inhibit the development of chronic

diseases (9). Ursolic acid has many beneficial effects as it
may be involved in various cellular mechanisms such as

nuclear factor-kappa B (NF-κB), apoptosis (10), insulin

signaling (11), antioxidants in the brain (12), oxidative

levels in the liver (13, 14), and atrophy (14).

2. Objectives

The role of UA in zymosan-induced inflammatory

responses has not been studied. Therefore, this study

demonstrated that UA from Vietnamese P.frutescens (L.)

Britt. leaves inhibited zymosan-induced inflammation

in macrophages.

3. Methods

3.1. Plant Material

The P.frutescens (L.) Britt. leaves were collected from

Thai Binh, Vietnam, in July 2018. The samples were
identified (HNU024060) by the Biological Museum,

VNU, University of Science.

3.2. Chemicals

Zymosan, UA, laminarin (Dectin-1 antagonist),

polysaccharide galactan, anisaldehyde solution, and

dimethyl sulfoxide (DMSO) were obtained from Sigma-

Aldrich. tumor necrosis factor-α, IL-6, and IL-12p40 ELISA

kits were purchased from BD Pharmingen (Franklin

Lakes, NJ). Specific antibodies against extracellular

signal-regulated kinases (ERK)1/2, phospho-

(Thr202/Tyr204)-ERK1/2, p38, phospho-(Thr180/Tyr182)-

p38 were purchased from Cell Signaling Technology

(Beverly, MA). Phospho-(Ser345)-p47phox was purchased

from Sigma-Aldrich, and p47phox was purchased from

Thermo Fisher Scientific. Ethanol, n-Hexane, methanol,

ethyl acetate, and phosphate buffer were purchased

from Merck.

3.3. Extraction and Isolation

Ursolic acid was extracted from P.frutescens leaves

according to the method previously described by

Huaman et al. (15). Specifically, P.frutescens leaves (1000

grams) were collected, dried, and pulverized into

powder (108 grams). The dry powder was then soaked in
ethanol (96%) (10 grams in 100 mL). The organic phase

was renewed twice every 24 hours. The extract was then
evaporated to obtain the residue (9.68 grams). The

residue was collected and defatted with hexane (180

mL). The organic phase was removed, and the residue
(5.84 grams) was collected and redissolved in ethanol

(400 mL) before being decolorized with activated
carbon. Finally, ethanol (96%) (250 mL) solution was

used to crystallize until a white amorphous solid (2.87

grams) of UA was obtained.

3.3.1. Thin-Layer Chromatography Analysis of Ursolic Acid

The presence of UA was indicated by thin-layer
chromatography (TLC) with a mobile phase of n-hexane

and ethyl acetate (3:1 v/v), detected by anisaldehyde

solution (16).

3.3.2. High-Performance Liquid Chromatography Analysis of
Ursolic Acid

The purity of UA was evaluated by the high-
performance liquid chromatography (HPLC) method

using a Shimadzu system. The mobile phase used a

solvent system of 0.1 M phosphate buffer and methanol
(pH = 3) (10:90 v/v). The experiment was performed at

21°C, with a sample volume of 10 μL, a flow rate of 0.9
mL/min, and a detection wavelength of 210 nm (17).

3.4. Cell Culture

Raw 264.7 cells were obtained from the American
Type Culture Collection and cultured according to the

biobank instructions to achieve 80% - 85% confluence.

Briefly, the cells were cultured in Dulbecco’s Modified

Eagle Medium (DMEM) with 10% FBS, sodium pyruvate,

non-essential amino acids, penicillin G (100 IU/mL), and
streptomycin (100 µg/mL) at 37°C with 95% humidity and

5% CO2.

3.5. Assay of Cell Viability

Cell Counting Kit-8 (CCK, Dojindo Laboratories,

Kumamoto, Japan) was used for evaluating cell viability.

1×10^6 cells/well were incubated with UA (10 - 40 μg/mL)

for 48 hours. Then, 10 μL of CCK was added to the cells

for 1 hour. The absorbance of the cells was measured at

450 nm using an enzyme-linked immunosorbent assay

(ELISA) reader (Molecular Devices, San Jose, CA, USA).
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3.6. Enzyme-Linked Immunosorbent Assay

Ursolic acid was added to the cells for 45 minutes

before stimulation with zymosan. Enzyme-linked

immunosorbent assay reagents were used to analyze the

levels of TNF-α, IL-6, IL-10, and IL-12p40 in the

supernatants after 18 hours.

3.7. Western Blotting

The phosphorylation of ERK1/2, p38, Ser345, and

p47phox after treatment was detected by Western

blotting (18). Raw 264.7 cells were incubated with UA

after treatment with laminarin, polysaccharide

galactan, or 0.1% DMSO. Then, zymosan (100 µg/mL) was

added to the cells. Afterward, the cells were lysed.

Primary antibodies were used against the following

proteins: Extracellular signal-regulated kinases1/2

(1:1000), phospho-(Thr202/Tyr204)-ERK1/2 (1:1000),

phospho-(Thr180/Tyr182)-p38 (1:1000), p38 (1:1000),

phospho-(Ser345)-p47phox (1:1000), and p47phox

(1:1000). A secondary antibody, HRP-linked anti-rabbit

antibodies (cell signaling technology), was used.

Chemiluminescence assay (ECL; Amersham-Pharmacia)

was used for the development of the membranes.

3.8. Measurement of Intracellular Reactive Oxygen Species

The measurement of intracellular superoxide levels

was described previously (18). The cells were incubated

with UA for 45 minutes after treatment with laminarin

(0.25 mg/mL), polysaccharide galactan (0.25 mg/mL), or

0.1% DMSO for 60 minutes. Then, zymosan (100 µg/mL)

was added to the cells for 30 minutes. In the next step, 2

μM DHE (Calbiochem) was incubated with the cells for

15 minutes at 37°C in CO2. A laser scanning confocal

microscope (LSM 510) and a Carl Zeiss vision system

(LSM510) were used to analyze the cells and the average

relative fluorescence intensity of each group.

3.9. Determination of Nicotinamide Adenine Dinucleotide
Phosphate Oxidase Activity

Raw 264.7 cells were incubated with UA for 45

minutes after treatment with laminarin (0.25 mg/mL),

polysaccharide galactan (0.25 mg/mL), or 0.1% DMSO for

60 minutes. Then, zymosan (100 µg/mL) was added to

the cells for 30 minutes. Lucigenin chemiluminescence

assay (Sigma) was used to evaluate nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase

activities in the cells as described previously (18).

3.10. Statistical Analyses

The results from the independent experiments are

expressed as the mean ± SD. The data were analyzed
using Student’s t-test with ANOVA to determine the

differences among the groups. P < 0.05 was considered
significant.

4. Results

4.1. Thin Layer Chromatography Analysis and High-
Performance Liquid Chromatography Analysis of Ursolic
Acid

The struture of UA (Figure 1A). Thin layer

chromatography analysis showed that the purified UA

sample exhibited a single band equivalent to the

standard UA (Figure 1B). The sample UA was further

tested for purity using HPLC. The results indicated that

the sample UA was consistent with the standard UA in

both shape and retention time (Figure 1C, D).

4.2. Cytotoxicity of Ursolic Acid to Cell Viability

The results showed that UA levels between 10 and 40

μg/mL did not affect cell viability (Figure 2).

4.3. Ursolic Acid Inhibits Cytokine Production by Zymosan-
Activated Macrophages

The anti-inflammatory effects of UA were examined

for the production of pro-inflammatory cytokines.

Ursolic acid at 30 μg/mL (P < 0.001) strongly inhibited

TNF-α, IL-6, and IL-12p40 in Raw 264.7 cells (Figure 3A).

4.4. Ursolic Acid Modulates Dectin-1-Mediated Cytokine
Production in Response to Zymosan

The production of zymosan-induced cytokines was

significantly increased in Raw 264.7 cells pretreated
with laminarin (Figure 3B). These data indicated that UA

inhibited pro-inflammatory cytokine production in Raw

264.7 cells through Dectin-1.

4.5. Ursolic Acid Modulates Dectin-1-Mediated Mitogen-
Activated Protein Kinase Activation in Recognizing to
Zymosan

The phosphorylation of ERK1/2 and p38 induced by
zymosan was detected in Raw 264.7 cells pretreated with

laminarin, which blocks Dectin-1. In contrast, phospho-

p38 and phospho-ERK1/2 were not detected in cells that

were not stimulated in the presence of laminarin

(Figure 4). The data indicated that UA significantly
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Figure 1. A, structure of Ursolic acid (UA); B, thin layer chromatography (TLC) for crude sample and purified sample.1, crude sample; 2, sample UA; 3, standard UA. C,
chromatogram of standard UA; D, Chromatogram of sample UA.

Figure 2. The density of 1×106 cells/well were treated with ursolic acid (UA). Cell viability was assessed with CCK-8. -, 0.1% dimethyl sulfoxide (DMSO).

inhibited the activation of MAPK in Raw 264.7 cells in

response to Dectin-1/zymosan. 4.6. Ursolic Acid Inhibits Reactive Oxygen Species
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Figure 3. Ursolic acid inhibited the zymosan-induced inflammatory responses through Dectin-1. A, Raw 264.7 were treated with UA at concentrations (5, 10, 15, 20, 25, 30 µg/mL)
before stimulation with zymosan (100 µg/mL); B, Raw 264.7 was incubated UA (30 µg/mL) for 45 min after pre-treated with laminarin, polysaccharide galactan or 0.1% DMSO for
60 min. Then, zymosan (100 µg/mL) was added in the cell for 18h and supernatants were harvested for enzyme-linked immunosorbent assay (ELISA). The figure is presented as
mean ± SD of five experiments. ***P < 0.001 compared to control culture group. -, 0.1% dimethyl sulfoxide (DMSO).

Figure 4. Ursolic acid inhibited the zymosan-induced mitogen-activated protein kinase (MAPK) activation through Dectin-1. Raw 264.7 was incubated UA (30 µg/mL) for 45 min
after treating with laminarin (0.25 mg/mL), polysaccharide galactan (0.25 mg/mL) or 0.1% dimethyl sulfoxide (DMSO) for 60 min. Then, zymosan (100 µg/mL) was added in the
cell for 30 min. Western blot analysis detects the activation of p38 and extracellular signal-regulated kinases (ESK)1/2. -, 0.1% DMSO; UA, ursolic acid; Zym, zymosan; Lam,
laminarin; Gal, galactan.

Because Dectin-1-mediated uptake of zymosan

generates reactive oxygen species (ROS), we investigated

whether UA affects Dectin-1-mediated ROS production in

macrophages infected with zymosan. As shown in

Figure 5A, zymosan strongly induced superoxide

production in macrophages. However, zymosan-

induced superoxide secretion in stimulated

macrophages was significantly blocked by UA. As

expected, superoxide production increased in response

to zymosan in macrophages stimulated with laminarin

and UA. The findings indicated that UA regulates ROS

through Dectin-1 in macrophages infected with

zymosan.
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Figure 5. Reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities by zymosan-induced in Raw 264.7 cells are inhibited by
Ursolic acid (UA). Raw 264.7 was incubated UA (30 µg/mL) for 45 min after treating with laminarin (0.25 mg/mL), polysaccharide galactan (0.25 mg/mL) or 0.1% dimethyl sulfoxide
(DMSO) for 60 min. Then zymosan (100 µg/mL) were added in the cell for 30 min (for A, B) and 15 min (for C). Ursolic acid inhibits zymosan-induced ROS generation (for A) and
NADPH oxidase activities (for B) in cells. The cells were lysed and analyzed by western blot (for C). The figure is presented as the mean ± SD of three experiments (***, P < 0.001
compared to control culture group). -, 0.1% DMSO; UA, ursolic acid; Zym, zymosan; Lam, laminarin; Gal, galactan.

4.7. Ursolic Acid Blocked Nicotinamide Adenine Dinucleotide
Phosphate Oxidase Activity

Nicotinamide adenine dinucleotide phosphate

oxidase is the enzyme in leukocytes responsible for ROS

production. Therefore, we explored the role of UA in

NADPH oxidase activity in macrophages stimulated with

zymosan. The results are shown in Figure 5B.

Macrophages stimulated with zymosan induced a high

level of NADPH-induced lucigenin chemiluminescence.

In contrast, macrophages stimulated with UA, in the
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presence or absence of galactan, showed abrogated

NADPH oxidase activity. As expected, macrophages

induced a high level of NADPH-induced lucigenin

chemiluminescence in the presence of laminarin. This

demonstrated that the effect is specifically due to

Dectin-1 receptor activation.

Nicotinamide adenine dinucleotide phosphate

oxidase is activated by the phosphorylation of p47phox.

Therefore, we examined the levels of zymosan-induced

p47phox phosphorylation in macrophages. As shown in

Figure 5C, the zymosan-induced phosphorylation of

p47phox was detected in macrophages pretreated with

laminarin, which blocks Dectin-1. In contrast,

phosphorylation of p47phox was not detected in cells

that were not stimulated in the presence of laminarin.

These data suggest that UA suppresses the production of

NADPH oxidase through Dectin-1 in macrophages

infected with zymosan.

5. Discussion

Inflammation is an important protective mechanism

for health because it is the immune system's response to

harmful stimuli (1). However, uncontrolled acute

inflammation can become chronic, contributing to

many chronic inflammatory diseases (2). Therefore, new

strategies to inhibit inflammation that will help

improve patient survival are very important. Ursolic

acid can inhibit tumor invasion, chromosomal

aberration, and tumorigenesis, and it can suppress NF-

κB signaling in cancer cells (10). Ursolic acid has also

been demonstrated to protect the liver by reducing

apoptotic signaling and oxidants (13). Additionally, UA

can decrease inflammation and the expression of

markers of cardiac damage (19). However, the role of UA

in the regulation of zymosan-dependent signaling is

unclear. The current data show that UA plays an

important role in regulating zymosan-stimulated

inflammatory responses.

The results of our study show that UA regulates

zymosan-induced inflammatory cytokine secretion in

macrophages, and this depends on Dectin-1. Recent

research also showed that UA inhibited LPS-induced

prostaglandin E2, iNOS, cyclooxygenase, and ROS in

macrophages (20, 21). The inflammatory signaling of

acute and chronic inflammation in immune cells is

mediated by the mitogen-activated protein kinase

(MAPK) pathway (22). The data from this study show that

UA inhibits zymosan-stimulated MAPK activation

through the Dectin-1 receptor. This is consistent with

previous research in which UA inhibited the

phosphorylation of p38 and ERK1/2 in SK-MEL-24 cells

(21).

Dectin-1 signaling triggers innate immune responses

leading to the production of inflammatory factors such

as ROS (23, 24). In this study, we show that ROS, NADPH

oxidase activity, and the phosphorylation of p47phox in

macrophages were suppressed by UA, depending on

Dectin-1. Reactive oxygen species is critically involved in

acute and chronic inflammation, inducing necrosis

through DNA single-strand breaks (25). More

importantly, the inhibition of Ser345 phosphorylation

of p47phox suppressed ROS production in synovial

neutrophils in patients with rheumatoid arthritis (26).

Together with previous studies, our data show the

potential for using UA to manage acute inflammation

through ROS regulation.

To date, many studies have shown that UA plays a

very important role in controlling diseases, including

inflammatory and infectious diseases (9). The data in

this study first demonstrate a role for UA in the

regulation of zymosan-dependent signaling. For many

years, glucocorticoids have been considered an

important component in the treatment of

inflammatory diseases because of their strong anti-

inflammatory properties (27). However, the use of

glucocorticoids in clinical practice is still limited due to

a number of side effects related to high concentrations,

dosage, and long-term use (26). Therefore, novel anti-

inflammatory approaches based on glucocorticoid

mechanisms could lead to the development of new anti-

inflammatory drugs that relieve inflammation with less

toxicity and fewer side effects. As zymosan is a strong

agent for inducing systemic inflammatory response (4),

the data in this study suggest a therapeutic role for UA

in fungus-related diseases and inflammatory

conditions.

5.1. Conclusions

This study demonstrates that UA markedly inhibits

zymosan-stimulated pro-inflammatory factors such as

pro-inflammatory cytokines, MAPKs, ROS, NADPH

oxidase, and the phosphorylation of p47phox in

macrophages through the Dectin-1 receptor. Therefore,

the data in this study may suggest new opportunities

and therapeutic approaches for treating zymosan-

induced inflammation.
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