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Abstract

Background: Recently, introducing new drug delivery approaches to maintain drug concentrations at reasonable levels for

longer periods is widely emerging in pharmaceutical science. In this respect, multilamellar nanomaterials such as layered
double hydroxide (LDH) nanocomposites are considered favorable topics due to their high specific surface areas and abundant

interlayer spaces for drug loading, as well as appropriate properties, including ease of synthesis, high thermodynamic stability,

and controlled drug delivery.

Objectives: In the current study, we aimed to prepare a honey-incorporated Cu/Al-LDH (Ho@Cu/Al-LDH) nanocomposite as a

platform for controlled drug delivery using ibuprofen (Ibu) as a model pharmaceutical agent. Additionally, the dye removal

potential of this nanocomposite was also assessed.

Methods: Cu/Al-LDH nanocomposite was prepared using honey as an anionic ligand by hydrothermal precipitation. The

product was collected and dried after several washing steps. Subsequently, the prepared nanocomposite was evaluated through

physicochemical properties, dye removal potential, total antioxidant capacity, and entrapment efficiency as well as drug release

properties.

Results: The Ho@Cu/Al-LDH nanocomposite exhibited good physicochemical properties with an average particle size of 123.7

nm and a PDI of 0.37, as well as relative uniformity and suitable morphology. The nanocomposite also presented good

antioxidant properties [ferric reducing antioxidant power (FRAP) value of 298.42 ± 0.93 μM Fe(II)/g], high entrapment efficiency
(EE) during the evaluation, and a pH-dependent controlled release profile (42.3 ± 0.243% at pH 7.4 and 0.481 ± 32.1% at pH 9.5),

which was in good agreement with the Korsmeyer-Peppas model.

Conclusions: However, the incorporation of natural compounds into LDHs is no longer restricted. In particular, the present

study introduces a promising approach to reduce dose-related adverse effects and address health concerns by developing

organic-inorganic nanocomposites for controlled drug delivery. In addition, this nanocomposite can also be used as an effective

and low-cost recyclable adsorbent.

Keywords: Nanomaterials,  Layered Double Hydroxide (LDH) Nanocomposites,  Intercalation Compounds,  Antioxidant

Properties,  Controlled Drug Delivery

1. Background

In recent years, drug delivery approaches have

received extensive attention in pharmaceutical science.

From this perspective, drug administration through

controlled delivery systems is a favorable topic (1-3).

These systems maintain the drug concentration at

intended levels for a longer period, subsequently

decreasing the dosing intervals. Moreover, conventional

approaches are usually associated with adverse effects

and treatment failure, leading to an increased demand

for new drug carriers (4-7). Recently, spectacular

advances in nanomaterials have been noticed in the

field of drug delivery due to their unique properties,

such as a high surface-to-volume ratio, customizable
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particle size, and high solubility. As a class of

nanocomposites, layered double hydroxide (LDH)

nanoparticles, also known as anionic clays or

hydrotalcite-like systems, have shown the capacity to

preserve drug molecules in the interlayer spaces (8, 9).

Originally derived from the structure of brucite (Mg

(OH)2), these layered nanostructures can be formed by

replacing a part of divalent cations with trivalent

cations, typically stabilized by exchangeable interlayer

anionic species (either inorganic or organic) and water

molecules. Regarding the size/charge ratio of anions

and the dimensions of guest species, there should be a

host-guest relationship between them. In this context,

LDH nanoparticles can be easily manipulated for

intercalating various drug molecules with many metal-

anion combinations and possible compositions to

reduce the degradation rate and provide a sustained

release profile (10, 11).

By incorporating a polymer into LDH nanoparticles, a

polymer-based nanocomposite film can be obtained

with unique functions and structures, which can be

defined as solution intercalation, melt intercalation, or

emulsion intercalation through a layer-by-layer self-

assembly method (12, 13). In the field of drug delivery,

the utilization of inorganic materials may be associated

with the production of harmful byproducts and

environmental impacts. Instead, using natural

substances and green synthesizing methodologies can

minimize energy consumption and pollutant

production, as well as improve human health (14, 15).

Accordingly, natural-derived substances (such as honey)

that structurally consist of several organic

macromolecules (like carbohydrates, proteins, nucleic

acids, and fatty acids) are drawing interest (16, 17).

Natural-based nanocomposite materials are generally

considered non-toxic and biocompatible, with high

chemical stability and pH-dependent solubility (12, 18).

They are prepared through inexpensive processes and

can be easily modified with unique physicochemical

properties for different applications such as

environmental science, catalysis, biosensing, cosmetics,

and medicine (10, 19). Although switching to biological

sources might address numerous significant problems,

the possibility of rapid degradation of active

ingredients during storage, either by hydrolysis or

oxidation, and inadequate therapeutic responses due to

restricted release profiles highlight the necessity of

introducing drug delivery systems that can address

these issues (20).

2. Objectives

Therefore, the current work was proposed to

introduce a new drug delivery platform that can

preserve active ingredients from rapid degradation and

provide a prolonged release profile by using natural-

derived substances. Accordingly, we aimed to green

synthesize and evaluate the physicochemical

characteristics of a natural-based nanocomposite using

honey as an interfacial ligand, named honey-

incorporated Cu/Al-LDH (Ho@Cu/Al-LDH)

nanocomposite. In this respect, ibuprofen (Ibu; a poorly

water-soluble drug prone to immediate degradation in

extreme environments) was chosen as a model

pharmaceutical agent to investigate the potential

applications of this system for controlled drug delivery.

Further, the dye removal potential of this

nanocomposite was also assessed as a low-cost and

recyclable adsorbent.

3. Methods

3.1. Materials

Cupric nitrate trihydrate (Cu(NO3)2·3H2O),

aluminum nitrate nonahydrate (Al(NO3)3·9H2O), 2,4,6-

Tris(2-pyridyl)-s-triazine (TPTZ), ascorbic acid, sodium

acetate (CH3COONa), acetic acid (CH3COOH), ferric

chloride (FeCl36H2O), ferrous sulfate (FeSO47H2O),

methylene blue, and Ibu (98% purity) were purchased

from Sigma-Aldrich, Germany. Honey was derived from

Lalezar, Kerman province, Iran. Sodium hydroxide

(NaOH), hydrochloric acid (HCl), and ethanol (96%) were

purchased from Merck, Germany.

3.2. Preparation of Ho@Cu/Al- Layered Double Hydroxide
Nanocomposite

The Cu/Al-LDH nanoparticles were prepared using

honey as an anionic ligand based on previous literature

by a co-precipitation-assisted hydrothermal method (21-

23). Briefly, 2.5% w/v of Cu(NO3)2· 3H2O and

Al(NO3)3·9H2O in a 2:1 molar ratio were dissolved in 20

mL of a water/ethanol (1:1) solution. To increase the pH

of the solution to 9.5, NaOH (2 M) was added along with

magnetic stirring (400 rpm for 2 hours at 50°C).
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Subsequently, the solution was mixed with 5% w/v of

honey, and stirring continued for a further 4 hours

under an argon atmosphere. It was then poured into the

autoclave and heated for 8 hours at 110°C. Afterward, the

product was collected and dried at 80°C overnight,

followed by several washing steps with water/ethanol

solution to remove excess anions and obtain the

Ho@Cu/Al-LDH nanocomposite (18, 21, 24). However, no

attention was paid to control other physicochemical

properties.

3.3. Physicochemical Characterization

Following the preparation of the Ho@Cu/Al-LDH

nanocomposite, physicochemical properties were

assessed. High-performance thin-layer chromatography

(HPTLC) was employed to confirm the presence of honey

in the product using water/ethanol (1:1) solution and

Silica gel 60 F254 HPTLC aluminum plates (10 × 10 cm;

Merck, Germany) as the mobile and stationary phases,

respectively (25-27). Following the advancement in a

developing chamber, densitometry analysis (CAMAG TLC

Scanner 3, Switzerland) was used to quantify the bands

at 254 nm using WIN CATS software (version 4 X) (28).

The physical stability was also assessed using

centrifugation durability and thermodynamic

accelerated tests (heating-cooling and freeze-thaw

cycles), while visually observing for any changes (29).

The dynamic light scattering (DLS) method (VASCO®,

Cordouan Technologies, France) was used to determine

the average particle size and polydispersity index (PDI).

It is a rapid and non-destructive method based on

Brownian motion in the liquid phase (30, 31).

Additionally, the morphology and uniformity of the

prepared nanocomposite were assessed using scanning

electron microscopy (SEM) analysis with an acceleration

voltage of 15 kV (FE-SEM, MIRA 3 XM, Tescan Inc., USA)

according to previously reported literature (32, 33).

3.4. Study of Dye Removal Potential

Based on previously reported literature, the potential

dye removal applications of the prepared

nanocomposite were also assessed (23, 33, 34).

Accordingly, the sample suspension (dispersed in

water/ethanol (1:1) solution) was mixed with a

methylene blue diluted solution (100 ppm) at room

temperature with continuous stirring (150 rpm for 2

hours). The liquid and solid phases were separated by

filtering, and the quantity of methylene blue was then

calculated at predetermined intervals using a UV

spectrophotometer (λmax: 664 nm). The experiment was

conducted in triplicate at two different pH values (7.4

and 9.5), and dye removal (%) was reported as mean ± SD.

3.5. Study of Total Antioxidant Capacity

The ferric reducing antioxidant power (FRAP) assay

was conducted to evaluate the total antioxidant capacity

of the Ho@Cu/Al-LDH nanocomposite with slight

modifications (35-37). Accordingly, 200 μL of the sample

suspension was mixed with 1800 μL of FRAP reagent,

which contained 2.5 mL of TPTZ solution (5 mM of TPTZ

in 20 mM HCl), 2.5 mL of FeCl3·6H2O solution (20 mM),

and 25 mL of acetate buffer (300 mM, pH 3.6), followed

by incubation in the dark (tubes covered with

aluminum foil) for 10 minutes at 25°C. Using aqueous

solutions (50 to 1000 μM) of ferrous sulfate

heptahydrate (FeSO4⋅7H2O), the standard calibration

curve was plotted at 593 nm. The experiment was

conducted in triplicate during a 30-day assessment.

Results were compared to ascorbic acid and reported as

mean ± SD. Eventually, the FRAP value was determined as

the micromolar equivalent of ferrous in the sample

mass (μM Fe (II)/g). Theoretically, different

concentrations of an antioxidant agent cause changes in

the FRAP assay absorbance equivalent to Fe(II) solution

(1 μM).

3.6. Study of Entrapment Efficiency and Drug Release

To evaluate the potential applications of this

nanocomposite for controlled drug delivery, Ibu was

chosen as a model pharmaceutical agent. Therefore, the

entrapment efficiency (EE) of Ibu-loaded Ho@Cu/Al-LDH

(Ibu-Ho@Cu/Al-LDH) nanocomposite was studied with

reference to previously reported studies (22, 38, 39).

Primarily, the calibration curve of Ibu was plotted at

λmax (228 nm) and linearity was checked (R² = 0.996;

LOD: 3.78 and LOQ: 12.56 ppm). Next, the sample

suspension was mixed with Ibu solution (10 mg/mL) by

continuous stirring (100 rpm) for 10 hours at room

temperature. Afterward, 100 μL of the prepared

nanocomposite was diluted with a water/ethanol

solution (1:1), and the concentration of Ibu was

measured using UV spectrophotometric analysis. The

experiment was conducted in triplicate, and Ibu content

(%) was reported as mean ± SD according to Equation 1:
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Wt is the total amount of Ibu determined in the Ibu-

Ho@Cu/Al-LDH nanocomposite, and Wi is the total

quantity of Ibu used. To ensure there is no interference

from other components, the unloaded formulation was

used as a blank. The release profile of the prepared

nanocomposite was assessed under sink conditions

using a Franz diffusion cell with slight modifications (2,

21, 22). The cellophane membrane (synthetic semi-

permeable membrane with a molecular weight cut-off

of 12 kDa) was deposited in the receiving medium for

complete saturation overnight. The formulation was

poured into the donor compartment, and sampling was

carried out under constant conditions (stirring at 200

rpm and 37 ± 1°C) at predetermined intervals.

Subsequently, samples were subjected to UV

spectrophotometry analysis at λmax. The release profile

of the Ibu-Ho@Cu/Al-LDH nanocomposite was assessed

under two different pH levels (7.4 and 9.5). Moreover, the

release profile of pure Ibu (dissolved in water/ethanol)

was also evaluated to provide a better concept. The

experiment was conducted in triplicate, and results

were expressed as mean ± SD.

Following, different kinetic models (zero-order, first-

order, Higuchi, Hixon-Crowell, and Korsmeyer-Peppas)

were mapped to define diffusion characteristics and the

release profile. In this respect, the best-fitted equation

was selected based on the R² value approaching and the

slope of the respective plots. Further, the Akaike

Information Criterion (AIC) was also used to test the

goodness of fit according to the maximum likelihood

using the KinetDS software program (KinetDS 3.0). This

statistical measure is used to assess the applicability of

models for a given set of data in terms of their

predictive accuracy and relative performance (40, 41).

When comparing several models, the one with the

minimum AIC value is considered the best fit according

to Equation 2:

Where n is the number of sampling intervals (release

data points), p stands for the number of parameters

(independent variables) in the model, and WSSR is the

abbreviation for the weighted sum of squares of

residues, estimated by Equation 3:

Aaccording, wi is an optional weighing factor, yi

denotes observed value, and y'i stands for predicted

value.

4. Results and Discussion

4.1. Physicochemical Characterization

The result of the HPTLC profile is illustrated in Figure

1. Accordingly, there is a high accordance between the

yielding band of honey and the prepared

nanocomposite, indicating the presence of ligands in

this nanostructure. The HPTLC analysis can create a

chromatographic fingerprint in the form of a unique

sequence of peaks corresponding to the entire analyzed

sample (28). Megalathan et al. (42) used thin layer

chromatography (TLC) analysis to evaluate the

intercalation of curcuminoids into Mg/Al LDH

nanoparticles. Shi et al. (25) investigated the chelator-

free labeling potential of Mg/Al-LDH nanoparticles

coated by bovine serum albumin for different isotopes

using TLC, as this method can determine the unbound

samples. In another study, Gilanizadeh and Zeynizadeh

used HPTLC analysis to assess the purity of substrates

and products as well as to monitor the completion of

synthesis reactions (26). Khashaba et al. synthesized

Fe3O4/FeOOH magnetic nanocomposites for the

extraction of triptan family members (such as

zolmitriptan) using HPTLC determination in the

presence of paracetamol and metoclopramide (43).

According to the thermodynamic accelerated

stability tests, the prepared nanocomposite

demonstrated acceptable physical stability. Visually,

there was no sign of fickleness or inconsistency

following the heating-cooling and freeze-thaw cycles.

The structure also exhibited high durability in the

centrifugation cycle, indicating good mechanical

strength. Figure 2 shows the results of DLS analysis and

SEM imaging. Based on the DLS results, the average

particle size of Cu/Al-LDH nanoparticles was

approximately 123.7 nm with a PDI of 0.37, indicating a

high degree of uniformity. The PDI is a measure of the

size distribution in a given sample. PDI values range

from 0 to over 1, where a lower PDI value indicates

higher homogeneity. Systems with a high degree of

EE %  =  (Wt/Wi)  × 100
(1)

AIC  =  n  ×  ln (WSSR)  +  2p
(2)

WSSR  =
n

∑
i=1

[wi(yi − y'
i
)

2
]

(3)
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Figure 1. The high-performance thin-layer chromatography (HPTLC) profile for honey and Cu/Al-LDH nanoparticles

Figure 2. The results of particle size analysis by A, DLS method; and B, SEM imaging for Cu/Al-LDH nanoparticles

homogeneity are anticipated to have a greater

predictive capability for physicochemical properties,

stability during storage, and release parameters. Similar

to the DLS data, SEM micrographs also indicated a

restricted range for particle size distribution. However,

the presence of some coarse particles in the product

might emphasize the necessity of fine milling.

4.2. Study of Dye Removal Potential

Figure 3 represents the results of the adsorbent

profile and dye removal potential for methylene blue.

Accordingly, an alkaline pH (9.5) provides a better

adsorbent profile due to the higher presence of OH⁻
anions, as the LDH structure becomes positively rigid in

alkaline conditions. Dye removal is an important

https://brieflands.com/articles/jjnpp-154579
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Figure 3. Result of dye removal in two different pHs (7.4 and 9.5)

process for industrial wastewater treatment, which can

be achieved by several techniques, including chemical

oxidation, membrane technology, coagulation,

photocatalytic degradation, and physical adsorption.

Among these, adsorption is considered the most

effective technique due to its low cost, simple design,

and high efficiency. This process might depend on

several factors such as adsorbent amount, contact time,

initial dye concentration, and pH (44, 45). So far, various

adsorbents such as carbon-based materials, metal

oxides, and polymers have been used to effectively

remove pollutants. These adsorbents work by

intercalating/capturing dye molecules and thus

purifying the wastewater. Therefore, LDH

nanocomposites might be of interest due to their

multilamellar structure, abundant interlayer spaces,

limited toxicity, facile synthesis, and high stability (46,

47).

Abdel-Hady et al. assessed the adsorption pattern and

textural properties of Zn/Mg/Al-LDH toward crystal

violet dye as a low-cost and recyclable adsorbent (23).

Based on their study, the synthesized LDH platform

shows a pH-sensitive behavior with higher dye removal

in alkaline conditions. Other factors that positively

affect dye adsorption include contact time, initial dye

concentration, and the LDH dose. However, the excessive

presence of LDH in the test environment can become an

obstacle for the active sites, leading to aggregation of

LDH layers and reduction of the adsorbent surface area.

In another study, Yadav and Dasgupta evaluated the

potential of Mg/Al-LDH for the adsorption of methyl

orange dye from aqueous solutions (48). Accordingly,

particles with a size range of 60 to 120 nm were

synthesized by the co-precipitation method under a

nitrogen atmosphere, while the pH and temperature of

the dye solution had a major effect on the adsorption

kinetics. de Sá et al. investigated the effects of pH,

contact time, and dye concentration on the removal

properties of the Ca/Al-LDH system for the adsorption of

Sunset Yellow FCF food dye (a petroleum-derived orange

azo dye) (49). Their results indicated that the pH range

of 4.0 to 10 is effective for dye removal, as low pH

modifies the surface charge of the adsorbent and

potentially increases the degree of dye dissolution from

interlayer spaces.

In summary, the present study indicates the

possibility of using LDH nanocomposites to develop

new adsorbents with elevated pollutant removal

capacity for environmental protection.
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4.3. Study of Total Antioxidant Capacity

Oxidation is one of the most common degradation

pathways of pharmaceutical ingredients. Therefore,

introducing drug delivery systems that can combat this

challenge and preserve drug molecules from destructive

factors is of interest. The FRAP technique exploits

antioxidant agents in a redox-linked colorimetric assay,

where a higher absorbance indicates a superior FRAP

value and greater antioxidant capacity (37, 50). The FRAP

value of this nanocomposite was measured to be 298.42

± 0.93 and 286.37 ± 1.45 μM Fe (II)/g on the production

day and after 30 days, respectively, showing minimal

alteration. Therefore, this system not only can be a

candidate for drug delivery but also can be used to

preserve incorporated molecules from immediate

degradation followed by oxidation. Fundamentally, the

antioxidant capacity refers to the exploitation of honey

in this system. Honey consists of several organic

molecules (such as terpenoids, alkaloids, and

flavonoids) with high antioxidant capacities (16, 51).

Several studies have revealed the potential antioxidant

properties of honey (52, 53). Neupane et al. studied the

antioxidant and antimicrobial properties of iron oxide

nanoparticles loaded with Himalayan honey (54). In

another study, Keskin et al. synthesized silver

nanoparticles based on chestnut honey and evaluated

the physicochemical properties for use as a potential

drug delivery system in fields such as medicine,

pharmaceuticals, and cosmetics (55).

4.4. Study of Entrapment Efficiency and Drug Release

The EE of the Ibu-Ho@Cu/Al-LDH nanocomposite was

measured to be 73.15 ± 0.401%, followed by 72.87 ± 0.547%

within a 30-day assessment, revealing negligible

alteration. In drug delivery systems, content uniformity

and chemical stability of loaded ingredients are

important for dose retention, as such systems are prone

to degradation of loaded molecules or leakage during

storage (56). The cumulative in vitro release is shown in

Figure 4. The study was conducted at two different pH

levels (7.4 and 9.5) for 360 minutes, and the results were

compared with the release profile of the pure Ibu

solution (Ibu-Sol). A release of 42.3 ± 0.243% of Ibu was

observed at pH 7.4 and 32.1 ± 0.481% at pH 9.5 from the

Ibu-Ho@Cu/Al-LDH nanocomposite, while 93.4% of pure

Ibu-Sol was released. Since Ibu is poorly soluble in water,

a water/ethanol (1:1) solution was used as the receiving

medium. The significant differences between pure Ibu-

Sol and drug-loaded nanocomposites at both pH levels

can be explained by the high compatibility of the drug

with the receiving medium and the physical

intercalation of Ibu into the interlayer spaces of the

nanocomposite. The shift in drug release between the

two pH levels might be attributed to the different

presence of OH⁻ anions, which can alter the

composition of the LDH nanocomposite and the

characteristics of interlayer spaces. Fundamentally, the

quantity and size/charge ratio of anions are crucial for a

homogeneous balance between the positively charged

layers. In the interlayer spaces, large-sized anions with

low charge are unable to organize a host-guest

relationship across host layers and guest species. In this

context, anions containing long chains (fatty acid esters

and long-chain alkyl carboxylates or sulfonates) can be

ordered by several arrangements such as monolayer

(parallel to the layers), parallel bilayer (tilted

monolayers), or bilayers, leading to diversity in the

interlayers (10). This functional diversity could be

affected within different pH ranges. The working pH

should not be lower than 4.0 due to the high fracture

possibility of hydroxyl layers. However, LDH is soluble at

low pH levels but remains stable at neutral and becomes

substantially tightened at alkaline pH levels, expecting a

controlled release profile (10, 57).

Kiani et al. demonstrated the pH sensitivity of Cu–Al

LDH nanoparticles for loaded drug (doxorubicin) with

higher released amounts in acidic pH ranges compared

to neutral (21). Among different methods to overcome

gastrointestinal (GI) barriers, pH-sensitive release

mechanisms are emerging in oral administration.

Although the oral route is recognized as the most

common route of administration, molecules may

encounter harsh conditions before reaching systemic

circulation, particularly different pH ranges (pH 1–7) and

destructive enzymes. In this respect, nanocomposites

could solve such problems and provide a controlled

release profile. By encapsulating LDHs within a pH-

sensitive polymeric shell layer (particularly alkaline-

solubles that are extensively used in enteric-coated

dosage forms), core-shell nanocomposites could be

achieved. Accordingly, the LDH nanocomposites would

be entirely preserved to reach the intestine, providing a

controlled release profile only after polymeric shell

decomposition.
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Figure 4. The results of cumulative release (mean ± SD)

Apart from that, the pH sensitivity of drug delivery

systems is desired in tumor-targeted therapies as

cancerous cells are characterized by a high level of

acidity (58). Hence, LDH nanocomposites could be used

to provide a prompt release profile in such

environments compared to normal ones. In this work,

Ibu was chosen as a model pharmaceutical agent, which

is commonly associated with adverse effects such as GI

ulcers, renal features, and hepatic damage (59).

Therefore, scientists have been encouraged to

investigate alternative administration routes.

Intercalating drugs in interlamellar spaces of

nanocomposites not only allows for a controlled release

profile and better therapeutic outcomes but also

reduces the possibility of adverse effects, as less drug

and dosing intervals would be required to achieve the

same responses (22, 60).

In a study by Dasgupta, Mg/Al-LDH nanoparticles

were synthesized for the intercalation of Ibu into the

interlayer space by the co-precipitation method (22).

Accordingly, the average particle size was measured to

be 55 nm, and the release profile demonstrated to follow

the first-order kinetic model in a 16-hour assessment.

However, their cumulative release profile yielded 85%

after 36 hours at pH 7.4. Wang et al. investigated the

controlled release profile and antibacterial activity of

synthesized graphene oxide–benzylpenicillin anion

intercalated Mg/Al-LDH (GO–BP-LDH) nanohybrid films

(61). According to their results, the synthesized GO-BP-

LDH nanohybrid films not only provided a controlled

release profile but also exhibited enhanced antibacterial

activity, possibly due to the synergy of both graphene

oxide and benzylpenicillin.

In the current study, different kinetic models were

used to describe the release profile of the prepared

nanocomposite. In this context, data were assessed, and

the best-fitted kinetic model was identified based on the

correlation coefficient value (Table 1). The validity of the

selected kinetic model was also confirmed by AIC values.

This mathematical method estimates the prediction

errors and helps to assess the best fitting of a model to

the data from which it was generated. Therefore, among

models with close R² values, the model that shows a

lower AIC value is more reliable. Accordingly, the

Korsmeyer-Peppas model was chosen as the best curve

fitting in both studied conditions (pH 7.4 and pH 9.5),

which expresses the drug release pattern from a

polymeric system regarding the exponent (N) of the

equation. Theoretically, an N value less than 0.45 (N <

0.45) indicates that the release regime mainly follows

https://brieflands.com/articles/jjnpp-154579
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Table 1. Results of Data Fitting Parameters and Akaike Information Criterion Values for Different Kinetic Models in Two Different pHs (7.4 and 9.5)

Variables
pH = 7.4 pH = 9.5

R2 AIC K N R2 AIC K N

Kinetics model

Zero-order 0.9868 4.9222 0.1351 - 0.9821 9.1765 0.0914 -

First-order 0.8003 1.7403 0.0017 - 0.8003 2.2838 0.0011 -

Hixson-Crowell 0.9421 8.0947 0.0024 - 0.9365 7.7792 0.0016 -

Higuchi 0.9747 9.5650 2.0534 - 0.9241 9.3043 1.3579 -

Korsmeyer-Peppas 0.9957 4.6872 0.0016 0.9736 0.9832 4.7609 0.0653 0.4161

Abbreviation: AIC, akaike information criterion.

hindered (or non-Gaussian) Fickian diffusion, which

occurs when movements of loaded molecules are

restricted by partially permeable barriers. An N value

between 0.45 and 1 (0.45 < N < 1) indicates that loaded

molecules would be released through anomalous

transport (non-Fickian diffusion), which is attributed to

further release mechanisms in addition to diffusion

(62). In the current study, the latter kinetic mechanism

(observed in the pH 7.4 release profile) may be ascribed

to the lower presence of OH⁻ anions and less tightness

of structure compared to alkaline conditions (pH 9.5).

Salguero et al. designed hybrid composite films

using Zn-Al-LDH and hyaluronan (hyaluronic acid) as a

delivery platform for intercalating ciprofloxacin (63).

Their hybrid composite films, with potential use as an

alternative approach for the prevention and treatment

of wounds' opportunistic infections, represented a

controlled release profile and best-fitted kinetics with

Higuchi and Korsmeyer-Peppas models at pH 5.8 and 7.4,

respectively. Therefore, after topical administration, this

drug delivery system provides sustained release and

maintains antibacterial activity at a suitable level along

with the healing properties of hyaluronan.

Ranjbar and Namazi introduced Mg/Al-

LDH@hydroxyapatite-doxorubicin coated magnetic

Fe3O4-polyethylene glycol nanocomposite as a

biocompatible and pH-sensitive system for targeted

release of doxorubicin (64). The prepared

nanocomposite demonstrated high cytotoxicity against

MCF-7 cancer cells and a controlled release profile,

which was found to be in good agreement with the

Korsmeyer-Peppas model. However, the development of

new drug delivery systems requires optimizing the

release profile to reduce drug-related side effects.

Therefore, the incorporation of therapeutic ingredients

into nanocomposites is considered a viable approach to

minimize adverse effects and address safety issues.

5. Conclusions

The continuous development of drug delivery

approaches has led to significant advances in public

health. In this context, nanoscience and nano-sized

materials are drawing interest due to their promising

applications in medicine. As a class of lamellar solids,

LDHs can resemble conventional intercalating

structures and qualitatively preserve loaded molecules

during storage from degradation by harsh

environments. These materials are typically prepared

through the incorporation of an organic guest into a

layered inorganic structure, yielding attractive hybrid

organic/inorganic nanocomposites that can be used as

carriers of different drugs and bioactive species.

Intercalating drugs into the interlayer spaces of LDH

nanoparticles can provide a controlled release profile

and improve therapeutic responses while reducing

adverse effects.

In the current study, we synthesized and evaluated

the physicochemical characteristics of Cu/Al-LDH

nanoparticles for controlled drug delivery. The prepared

formulation exhibited good physicochemical properties

with an average particle size of 123.7 nm and a PDI of

0.37. Further, SEM analysis revealed relatively uniform

particles and suitable morphology. Additionally, this

nanocomposite formulation could be used as an

effective and low-cost adsorbent to remove different

materials. The removal of pollutants, particularly dyes,

is an essential step in wastewater treatment and plant

health. Moreover, the Ho@Cu/Al-LDH nanocomposite

also revealed good antioxidant properties, which are

desirable for preserving oxidation-sensitive molecules

https://brieflands.com/articles/jjnpp-154579
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during storage. It demonstrated high encapsulation

efficiency with negligible alteration throughout the

assessment time, as well as a pH-dependent release

profile (42.3 ± 0.243% at pH 7.4 and 32.1 ± 0.481% at pH

9.5), following the Korsmeyer-Peppas kinetic model.

The incorporation of natural compounds into LDHs

is no longer limited, introducing a suitable approach to

minimize adverse effects. In the current study, Ibu was

used as a model drug to define the potential

applications of this system for controlled drug delivery.

Honey was chosen in this system due to its high

antioxidant capacity, which can help preserve the

loaded molecules from harsh environments. However,

the incorporation of natural-derived substances in

delivery systems is mainly considered to be safe and

biocompatible, providing access to a prolonged release

profile. Despite considering the antimicrobial

properties of honey, we aim to evaluate the potential

antimicrobial properties of this drug delivery system, as

well as exploit other pharmaceutical drugs such as

antibiotics to achieve synergistic effects and further

benefits. Nonetheless, cohort studies on possible

toxicity and further applications of LDH

nanocomposites should be conducted to assess their

safety and feasibility before individual practices.
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