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Abstract
Context: Oxidative stress is a hallmark of many types of neuropathology disorders and underlying mechanism in several 
neurodegenerative diseases and brain injuries. The CNS is particularly susceptible to oxidative toxic stress (OTS). Reactive oxygen spices 
are the basic inflammation and neurotoxicity mediators in ischemia/reperfusion injuries. The purpose of the present review is to provide 
an overview of some nanoparticles (NPs) in developing OTS conditions and neurological disorders.
Evidence Acquisition: Here, a nanotechnology approach is evaluated using NPs in human neuronal protection against OTS. It may be 
wide therapeutic applications in the case of acute and/or chronic neurodegenerative disorders related to OTS.
Results: In the brain of mice treated with nanosize TiO2, a significant association was found between the ability to induce the production 
of ROS and metabolic stress in intracellular environments and inflammatory responses in mice brai. The large surface area of AgNPs may 
efficiently facilitate the radicals generation including ROS in various organs. The production of ROS may cause DNA damage, cellular 
apoptosis, and activation of the mitogen activated protein kinase (MAPK) pathways which is responsible for regulating many cellular 
processes. Prolonged and excessive OTS may contribute to the activation of transcription factors and genes responsible for inflammation 
responses such as NF-κB and AP-1. Furthermore, OTS may contribute to the onset of neurodegenerative diseases. The ability of CuONPs to 
generate OTS in vitro studies has been demonstrated; however, information on the neurotoxicity of the CuONPs in vivo is low.
Conclusions: The NPs-induced OTS may increase the pro-inflammatory responses. On the other hand, administration of antioxidants 
such as NAC and vitamin C and E prior to exposure to metal NPs significantly decreases OTS conditions.
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1. Context
Nanotechnology is the science of the manipulation 

of materials and their utilization in different fields, in-
cluding medicine, pharmacology, electronics, and etc. 
However, the advent of nanotechnology resulted in 
human exposures to engineered nanomaterials which 
in turn may cause adverse health effects in exposed 
subjects in both environmental and occupational set-
tings. Thus, the evaluation of potential human health 
effects of this type of technology before the semateri-
als be fully exploited is important. Nanoparticles (NPs) 
are an ultrafine (< 100 nm) class of substances with 
characteristics including large surface area, surface ac-
tivity and shape (1). There are two main classes of NPs; 
combustion-derived NPs and manufactured NPs. Diesel 
exhaust particles and welding fumes are the examples 
of the first class. However, metal oxides NPs such as tita-
nium dioxide, cerium oxide, and silver oxide are manu-
factured NPs (2). Recently, the health effects of NPs are 

considered as an occupational and environmental prob-
lem (3). Many studies have been conducted to assess the 
role of oxidative toxic stress (OTS) in pathogenesis of 
NPs-induced neurotoxicity (4). The objective of the pres-
ent review is to summarize existing knowledge on the 
relevance of exposure to metal NPs and the role of OTS 
in metal NPs-induced neurotoxicity.

2. Evidence Acquisition
Here, a nanotechnology approach is evaluated using 

NPs in human neuronal protection against OTS. It may be 
wide therapeutic applications in the case of acute and/or 
chronic neurodegenerative disorders related to OTS.

2.1. Oxidative Toxic Stress and Nanoparticles Neu-
rotoxicity

Reactive oxygen species (ROS) and reactive nitrogen 
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species (RNS) are the most important classes of free 
radicals that continuously produced due to cellular 
metabolism, particularly during the mitochondrial 
respiration (5). Reactive species are normally main-
tained at low but given levels regulating through 
a balance between oxidants’ generation and their 
scavenging rate by various antioxidants (6). Mito-
chondria as the main sites for the metabolism of ox-
ygen, accounting for about 85% - 90% of the oxygen 
consumption of cells (7) are a potential endogenous 
source of ROS.

At low levels, ROS acts as signaling molecule in many 
physiological processes including cell proliferation (8), 
cellular aging (9), or cell death (10, 11) dependent on cell 
types. Under normal conditions, free radicals are elimi-
nated rapidly by some body’s defense mechanisms 
including enzymatic (superoxide dismutase (SOD), 
glutathione peroxidase (GPx), and catalase and non-
enzymatic (glutathione, coenzyme Q , β-carotene, and 
vitamins E and C) antioxidant systems that scavenge 
free radicals to nontoxic forms. Imbalance between 
generation of free oxidative radicals and antioxidant 
defenses results in the cumulative production of ROS/
RNS leading to a negative condition termed OTS (12-14). 
When particles deposited, oxidative damage of such 
macromolecules as lipids, nucleic acids, and proteins 
may occur. The brain is particularly susceptible to OTS 
because of its need to high levels of energy, low level of 
antioxidants as well as a high cellular content of lipids 
and proteins (15). Experimental studies have implicitly 
shown the role of ROS and OTS in pathogenesis of neu-
rodegenerative disorders (16). After entering the hu-
man body via different routes such as inhalation, skin, 
and ingestion NPs may then be distributed in the body 
and reach various tissues even the brain (17). However, 
direct disruption of neuronal cell membranes would al-
low NPs to reach the brain (18, 19). For instance, intrave-
nous, intraperitoneal, or intracerebral administration 
of silver (Ag), copper (Cu), or aluminium (Al) NPs (50 
- 60 nm) has been reported to disrupt the blood brain 
barrier (BBB) and neurodegenerative systems (20, 21).

Functionality on the NPs surface can cause OTS lead-
ing to inflammation in tissues where NPs are deposited 
(22). Functionality, NPs such as C60 fullerenes and ul-
trafine particles generate ROS especially when they are 
exposed to ultraviolet (UV) wavelengths or transition 
metals (23). For instance, NPs of silver produced ROS 
may result in oxidative DNA damage in the brain (24). 
Additionally, enhanced levels of OTS have been report-
ed in the mice brain with apolipoprotein E deficiency 
exposed to concentrated ambient NPs (25). High preva-
lence of neurodegenerative diseases such as Alzheim-
er’s disease and primary brain tumors has been report-
ed, however, the exact etiology of them is not clear yet 
and OTS has been reported as a possible mechanism of 
such diseases (26-29).

3. Results

3.1. Nanoparticles and Oxidative Toxic Stress

3.1.1. Titanium Dioxide Nanoparticles
Titanium dioxide (TiO2) NPs are produced in large quan-

tities because of their stronger catalytic activity than TiO2 
fine particles, they have been widely used in both indus-
trial and consumer products (30). Titanium dioxide NPs 
have larger surface area because of their smaller size re-
sulting in higher exposures that raises concerns about 
the potential adverse health effects of TiO2 NPs (31, 32). In 
the brain of mice treated with nanosize TiO2, a significant 
association was found between the ability to induce the 
production of ROS and metabolic stress in intracellular 
environments and inflammatory responses in mice brain 
(33, 34). Titanium dioxide NPs may cross the BBB and con-
centrate in the mice brain resulted in inflammatory cell 
infiltration and apoptosis of hippocampus cells leading 
to a decrement in cognitive function in the brain (35). As 
ROS generation would damage cell membranes, thereby 
facilitating the entry of TiO2 NPs may activate the up-
stream signaling pathway involved in OTS, it is necessary 
to investigate the P38-nuclear factor-E2-related factor-2 
(Nrf-2) pathway. The association between the Mitogen 
Activated Protein (MAP) kinase cascades (i.e. p38 and c-
Jun Nterminal kinase (JNK)) and the upstream signaling 
mechanism responsible for regulating OTS is well-known 
as well as OTS can activate JNKs and p38 MAP kinases in-
volving MAP kinase cascades (34, 36). Furthermore, TiO2 
NPs significantly alter the immune response, apoptosis 
and act as second messengers in intracellular signaling 
cascades. The increased ROS generation due to TiO2 NPs 
exposures may be related to activation of the P38-Nrf-2 
signaling pathway in brain injury (37).

3.1.2. Silver Nanoparticles
Silver NPs (AgNPs) have been used in antimicrobial, opti-

cal, conductive in chemical applications as well as in cos-
metic production, household appliances, and medicine 
which resulted in daily human exposure to the silver NPs 
(38, 39). Because of their antimicrobial properties, AgNPs 
has the most frequent application in commercial prod-
ucts. However, these NPs are known to induce toxicity in 
different species and argyria or argyrosis due to chronic 
human exposure to silver is well-known (40-42). Chemi-
cal composition, surface charge, solubility, size, shape, 
and their ability to bind biological sites are important 
factors in NPs toxicity (3). It is suggested that toxicity of 
AgNPs is independent of silver ions and oxidative stress 
is the main mechanism of toxicity (43, 44). The large sur-
face area of AgNPs may efficiently facilitate the radicals 
generation including ROS in various organs (45). Further-
more, AgNPs may deplete the antioxidant defense mecha-
nism and resulted in ROS accumulation, (22) initiating an 
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inflammatory response and perturbation and destruc-
tion of mitochondria (46) leading to release cytochrome 
C and apoptosis as final consequences. In addition to mi-
tochondria destruction, cell membrane damage seems 
to be another part of AgNPs mechanism of cytotoxicity 
preceding mitochondrial perturbation (38, 47).

3.1.3. Zinc Oxide Nanoparticles
Zinc oxide (ZnO) NPs are widely used in production of cos-

metics and sunscreens for protection against UV-induced 
skin damage (48). As an antimicrobial agent, ZnO NPs have 
been used as food additives and as packaging materials (2, 
3). Other applications of these NPs are their potential use 
as fungicides in agriculture (4), anticancer drugs and bio-
medical imaging (49). Toxicity of NPs on bacterial systems, 
vertebrates, and mammalian systems has been reported 
in previous studies (50). The production of ROS has been 
recommended as one of the primary mechanisms in NPs 
toxicity leading to oxidative stress, inflammation, as well 
as protein and DNA damage (51). Regarding ZnO NPs, the 
potential mechanisms of toxicity are thought to be oxida-
tive stress and DNA damages through lipid peroxidation 
as well as apoptosis via p53 and p38 pathways (52). The 
production of ROS may cause DNA damage, cellular apop-
tosis, and activation of the mitogen activated protein ki-
nase (MAPK) pathways which is responsible for regulating 
many cellular processes (53, 54).

3.1.4. Iron Oxide Nanoparticles
Iron oxide nanoparticles (IONPs) have many biomedical 

applications including cell labeling, drug targeting, gene 
delivery, hyperthermia therapy and as a contrast agent in 
magnetic resonance imaging (55, 56). Iron oxide NPs can 
cause a variety of tissue responses from cell activation 
and ROS generation to cell death (57). Moreover, IONPs 
might induce mitochondrial damage even if they are not 
localized into it (58).

Because of the ability of IONPs in passing through the 
BBB and entering the brain (59), the health consequences 
of IONP applications, particularly in the brain, are espe-
cially interested. Since IONPs have a large content of iron, 
they can potentially damage the cells (60). Iron-depen-
dent formation of ROS by the Fenton reaction has been 
considered because of many NPs (61). However, these con-
ditions may be accelerated because of liberating irons 
from deposited IONPs, since iron promotes the produc-
tion of ROS in the brain (61, 62).

Iron is a transition metal and because of its catalytic 
action in Fenton-type reactions may be resulted in ROS 
generation (particularly hydroxyl radicals). Besides Ad-
enosine triphosphate (ATP) generation, mitochondria 
are a major source of ROS production in an intracellular 
region. Thus, the investigation on activities of mitochon-
drial respiratory chain complexes is interesting (63).

Iron oxide NPs can reach the brain via the olfactory 
nerve resulted in OTS and ultra-structural alterations 

in the cells of the olfactory bulb (64). Although, there is 
little information about the health consequences of ac-
cumulation and retention of IONPs in the brain (59, 65), 
including the striatum and hippocampus (25, 66) it ap-
pears that iron-dependent processes are especially im-
portant for oligodendrocytes because of their highest 
content of iron compared to the other types of brain cells 
(67). Because of their highly oxidative energy metabo-
lism, oligodendrocytes are vulnerable to excess levels of 
iron which enhance OTS through the Fenton reaction 
(68). The high surface activity of NPs concentrated in the 
brain, during long-term exposures, may be related to cel-
lular interactions and free radical formation leading to 
brain damage and increased risk of neurodegenerative 
conditions (25). Because of the high level of a metabolic 
rate, low endogenous scavenger levels, and extensive net-
works of neurons, the brain is more vulnerable to OTS 
than many other tissues (28). It has been reported that 
excessive accumulation of ROS resulted in irreversible 
neuronal death in the brain which may progress to de-
velop neurodegenerative disorders (69). Prolonged and 
excessive OTS may contribute to the activation of tran-
scription factors and genes responsible for inflammation 
responses such as NF-κB and AP-1. Furthermore, OTS may 
contribute to the onset of neurodegenerative diseases. 
Therefore, it is recommended to carefully monitor the ac-
cumulation and retention of IONPs in the striatum (70).

3.1.5. Copper Oxide Nanoparticles
Copper oxide (CuO) is a semiconducting material with a 

monoclinic structure which exhibits useful chemical and 
physical properties (71). Because of its excellent thermal 
conductivity, the CuO suspension has been used in me-
chanical devices as a heat transfer fluid (72). It is showed 
that CuONPs could regulate the delayed rectifier potas-
sium current in hippocampal CA1 pyramidal neurons of 
rats and alter the action potential of hippocampal CA1 
neurons by impairing the functional properties of volt-
age-gated sodium channels (73). Additionally, CuONPs 
may cross the BBB and reach the central nervous system 
(CNS). Therefore, long-term exposure to CuONPs expect-
ed to be potentially neurotoxic (74).

The exposure to CuONPs may result in hippocampal 
dysfunction and further affect learning and memory abil-
ities (25, 75). The toxicity of particles is often explained by 
oxidative damage mechanism (76). The ability of CuONPs 
to generate OTS in vitro studies has been demonstrated; 
however, information on the neurotoxicity of the CuON-
Ps in vivo is low (77, 78). Furthermore, oxidative damage 
is associated with cognitive dysfunction and disorders in 
brain (79, 80).

3.1.6. Cerium Oxide Nanoparticles
Cerium oxide (CeO2) has been used as a polishing agent 

for glass productions, ophthalmic lenses, and precision 
optics. Another application of this substance as an UV-ab-
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sorber is for preventing solarization and discoloration of 
glass products. It is also used as a diesel fuel-borne cata-
lyst to reduce particulate matter emissions in emission 
control systems of automobile engines (81-83). Studies on 
CeO2NPs application to quench ROS in biological systems 
have shown that CeO2NPs are able to confer neuronal, 
ocular, and radioprotection (84, 85). Protective effects 
of CeO2NPs against oxidative and inflammatory inju-
ries caused by cardiac-specific expression of monocyte 
chemotactic protein-1 have been reported (82). The anti-
oxidative role of CeO2NPs is primarily due to exchange 
between ROS and the high ratio of electrons on the NPs’ 
larger surface area (86). Furthermore, inhibition of CSE-
induced activation of NF-κB and inflammatory cytokines 
generation have been reported in cells treated with 
CeO2NPs (87).

3.2. Antioxidants
An antioxidant is a molecule that can reduce or pre-

vent the oxidation of other molecules in the organism 
because of any chemical events such as ROS/RNS gen-
eration. The levels of ROS and RNS are balanced by two 
lines of cell defense including the enzymatic (as the first 
line) and nonenzymatic (as the second line) antioxidants 
providing maximal protection against OTS via ROS clear-
ing and scavenging (88). Preventive and therapeutic fea-
tures of antioxidants are well-known and they have been 
known to have a critical role in protecting biological 
sites from oxidative injuries (89-92). By now, many kinds 
of fruits, vegetables, plant food materials, and dietary 
supplementation have been investigated for their anti-
oxidant capabilities (92-94). The association between spe-
cific oxidative damage and sites of injury in many differ-
ent types of neurodegeneration conditions are not clear 
exactly. At present, a clear delineation of the cause-effect 
relationship cannot be concluded. However, a large num-
ber of studies indicates the role of oxidants in develop-
ing distinct pathological consequences promoting and 
propagating oxidative injuries leading to irreversible de-
generation in brain (69).

Recently, nano-antioxidants, the substances which 
scavenge certain free radicals, have been investigated in 
many studies and it has been indicated to have effective 
antioxidant in treatment of diseases.

4. Conclusions
Although neurotoxicity of combustion-derived NPs are 

reported in both in vivo and in vitro studies, it is difficult 
to evaluate; it in environmental and occupational set-
tings because, after generation, these NPs readily aggre-
gated (3). Anti-inflammatory properties of some metal 
NPs have been indicated suggesting them to pose anti-
inflammatory effects by down regulation of NF-κB sig-
naling pathway in macrophages (95). However, several 
studies have shown a major role of ROS in cytotoxicity of 
nanoparticles. The NPs-induced OTS may increase the pro-

inflammatory responses (22). On the other hand, admin-
istration of antioxidants such as NAC and vitamin C and 
E prior to exposure to metal NPs significantly decreases 
OTS conditions (96, 97). Further studies are required to 
improve existing knowledge on the mechanisms of NPs-
induced neurodegenerations.
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