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Abstract

Background: Cisplatin (CP), as an anticancer drug, causes nephrotoxicity. Zataria multiflora Boiss (ZM), a medicinal plant, has an-
tioxidant and anti-inflammatory properties.
Objectives: The current study investigated the effects of ZM on cisplatin-induced nephrotoxicity.
Methods: In the current experimental study, 22 male mice were randomly divided into four groups: the control; the ZM, 200 mg/kg
during seven days via gavage; the CP, 10 mg/kg intraperitoneally on the 5th day of study; and the ZM + CP. Serum creatinine and urea
levels, malondialdehyde (MDA), glutathione (GSH) and protein carbonyl (PC) levels in renal tissue of mice were histopathologically
and immunohistochemically assessed to determine nephrotoxicity.
Results: CP caused a significant increase in serum creatinine and urea levels, increased oxidative stress in kidney tissue, caused
histological changes, and increased caspase-3 immunoreactivity. ZM significantly mitigated the toxic effects of CP on the kidney
tissue. In addition, treatment with ZM significantly reduced immunoreactivity of caspase-3.
Conclusions: The findings of the present study suggested that the ZM as a potential antioxidant compound with scavenging free
radicals and anti-apoptosis property attenuated the nephrotoxicity induced by cisplatin.
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1. Background

Cisplatin (CP) is a chemotherapy drug widely used to
treat cancer. Clinical studies reported nephrotoxicity in-
duced by CP (1). Acute kidney injury is observed in 25% -
35% of patients receiving cisplatin (2). In the kidney of pa-
tients receiving cisplatin, concentration of CP in epithelial
cells of proximal tubule is about five times higher than
that of the serum value (3). Lower CP concentrations in-
duce apoptosis through caspase activations, while induce
necrosis in higher concentrations (4). CP with generation
of reactive oxygen species (ROS) and destroying cell com-
ponents induces nephrotoxicity (5). Kidney removes most
of the harmful substances produced in the body or entered
from outside such as chemotherapy drugs. Therefore, kid-
neys, as one of the vital organs, clean blood and maintain
the chemical balance in the body. This organ is the main
target of drug-induced damage that accumulates in large

quantities in the epithelial cells of nephrons (6). Studies
indicated that acute and chronic CP treatments cause kid-
ney damage and increase the risk of renal failure (7). In-
creased serum levels of creatinine and blood urea nitrogen
(BUN) are the side effects of cisplatin, which changes renal
function (2). The mechanisms of kidney damage caused
by cisplatin are generation of free radicals, mitochondrial
dysfunction, and apoptosis (8). Also, oxidative stress by
alterations in redox homeostasis directly damages renal
parenchyma and leads to impaired renal microvascular ac-
tivity and subsequently renal dysfunction (9).

Zataria multiflora Boiss (ZM) (Avishan-e-Shirazi), a
member of Lamianceae family, is one of the largest fami-
lies of herbal plants growing all around the world. ZM is a
medicinal herb used to treat various diseases. Pharmaco-
logical properties of ZM including anti-inflammatory (10),
radioprotective (11), chemoprotective (12), antibacterial,
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and antioxidant effects (13) are reported in the numerous
studies. Thymol and carvacrol, as phenolic compounds,
are the main active components of ZM (14). Studies show
that thymol by its antioxidant and anti-inflammatory
properties can suppress lipid peroxidation and subse-
quently protect healthy organs against toxicity induced
by oxidative stress (15) and chemotherapy (16). Also, some
studies confirmed the protective effect of thymol against
nephrotoxicity in mice (17).

2. Objectives

The current study aimed at assessing the protective
effect of ZM against cisplatin-induced nephrotoxicity via
biochemical, histopathological, and immunohistochemi-
cal assessments.

3. Methods

3.1. Plant Material and Extraction

Dried aerial parts of ZM were collected in the flower-
ing season from Firozabad county in Fars province, Iran.
Homogenous powder was macerated in 70% ethanol for 72
hours (1:10 w/v), after which the hydro alcoholic extract of
dried ZM was processed by removing the solvent using a
rotary (Heidolph, Germany). The ZM extract was standard-
ized based on thymol as the major active ingredient us-
ing RP-HPLC (reverse-phase high-performance liquid chro-
matography) method according to the authors’ previous
reports (18, 19).

3.2. Experimental Animals

Thirty-two adult male BALB/c mice (25 - 30 g) were used
in the study. The mice were obtained from Animal Re-
search Center of Mazandaran University of Medical Sci-
ences, Sari, Iran and kept under suitable conditions (23 ±
2°C, 55% ± 5% humidity, 12-hour dark/light cycle). A stan-
dard pellet chow and fresh tap water were available ad libi-
tum.

3.3. Study Design

In the experimental study, the mice were randomly di-
vided into four groups (eight animals per group): (I) re-
ceived normal saline, (II) received 200 mg/kg ZM daily for
seven consecutive days via oral gavage, (III) received a sin-
gle dose of CP (10 mg/kg) intraperitoneally on the 5th day
of study, and (IV) received ZM + CP. Doses of CP and ZM were
chosen according to previous studies (12, 20).

3.4. Specimen Collections

One day after the last treatment, the animals were anes-
thetized with ketamine and xylazine. Blood samples were
collected from the heart. Serum samples were used to mea-
sure creatinine and urea levels. Then, animals were sacri-
ficed, one kidney of each animal was immediately removed
and fixed in 10% buffer formalin for histological and im-
munohistochemistry (IHC) assay. And the other one stored
at -80°C for biochemical analysis.

3.5. Biochemical Analysis

The testicular lipid peroxidation was determined by
measuring the concentration of malondialdehyde (MDA)
using thiobarbituric acid through spectrophotometry.
MDA content was expressed as nM/mg protein. Tetram-
ethoxypropane (TEP) was used as the standard specimen.

The protein carbonyl (PC) was assessed spectrophoto-
metrically by reading the absorption rate at a wavelength
of 365 nm with an absorption coefficient of 22,000 M-1cm-1

and expressed as a nmol of DNPH per milligram of protein.

Content of the glutathione (GSH) in the samples was
determined by spectrophotometer with 5,5’-dithiobis-2-
nitrobenzoic acid (DTNB) as an indicator at 412 nm and ex-
pressed as µM.

3.6. Serum Markers of Kidney Damage

The serum creatinine and BUN levels were determined
using Pars Azmoon kits, Iran, (cat. No. creatinine: 1-400-
009 and BUN: 1-400-029).

3.7. Histological Assay

For histopathological assay and to determine the effect
of CP and ZM on kidney, samples were fixed in 10% (w/v)
buffer formalin for 24 hours. After processing and embed-
ding, samples were cut into 5-µm thick sections stained
with periodic acid-Schiff (PAS). Degeneration, infiltration
of leukocytes, atrophy of tubular and glomeruli, detach-
ment of tubular epithelial cell, pyknosis of renal epithe-
lium nuclei, and the appearance of protein columna were
scored. As a final point, tubular damage (5 field/ section)
was scored based on the percentage of cortical tubules
showing epithelial necrosis: 0 index; < 25% damage scored
1; 25% - 50% damage scored 2; 50% - 75% damage scored 3,
and > 75% damage scored 4 (21). All the histological stud-
ies were evaluated by a histologist, blind to the study, using
a light microscope.
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3.8. Immunohistochemistry Assay

IHC technique was performed using specific kits ac-
cording to the manufacturer’s instructions. After deparaf-
finization and rehydration, endogenous peroxidase activ-
ity was blocked by 0.3% H2O2 in methanol, incubated at 4°C
overnight with primary antibodies (anti-caspase 3 rabbit
polyclonal antibody, 1:100 in PBS, v/v, Abcam, lat: GR224831-
2). After incubation with secondary antibody, it was conju-
gated with horseradish peroxidase (mouse and rabbit spe-
cific HRP/DAB, Abcam, Lat: GR2623314-4) for 10 minutes;
sections were incubated with diaminobenzidine tetrahy-
drochloride for five minutes (22). For the quantitative anal-
ysis, IHC photomicrographs were analyzed with MacBio-
photonics ImageJ 1.41 software by densitometry method.
The positive staining intensity was assessed as the ratio of
the stained area to the entire field.

3.9. Statistical Analyses

Statistical analysis for the obtained data was per-
formed using SPSS version 19. The results were expressed as
the mean ± standard deviation (SD). One-way ANOVA and
Tukey post tests were also used. P value < 0.05 was consid-
ered as the level of significance.

4. Results

4.1. Effects of ZM on Oxidative Stress

The ZM extract was standardized based on the thymol
content (18, 19). The total thymol content of the extract was
9.24 ± 0.11 mg/g of dried extract. The MDA level, as the fi-
nal product of lipid peroxidation, significantly increased
(P = 0.001), and GSH content as an endogenous antioxi-
dant, decreased in the CP-treated group (P ≤ 0.001) com-
pared with the control group. In addition, PC increased
in the CP-treated mice (P < 0.0001) compared with the
control group. In contrast, ZM pretreatment in CP-treated
mice significantly decreased the MDA and PC levels (re-
spectively P ≤ 0.02 and P ≤ 0.009) compared with the CP
group, whereas the GSH content significantly increased (P
≤ 0.003) (Figure 1).

4.2. Effect of ZM on Creatinine and Urea

CP treatment significantly increased creatinine and
BUN levels. In contrast, ZM administration in CP-treated
mice significantly attenuated the creatinine and BUN lev-
els compared with those of the CP group (P < 0.05) (Table
1).

Table 1. Effect of ZM in CP-Treated Mice on Serum Marker Enzymes of Kidney
Damagea , b , c

Group Urea, mg/dL Creatinine, mg/dL

Control 27.8 ± 0.84 0.28 ± 0.05

ZM 28 ± 2 0.33 ± 0.05

DZN 38.2 ± 2.39A***,B*** 0.53 ± 0.1A***,B**

ZM + DZN 32.4 ± 2.4A*,B*,C** 0.38 ± 0.05C*

Abbreviation: ZM, Zataria multiflora Boiss.
aValues are expressed as mean ± SD.
bA, versus the control group; B, versus the ZM group; and C, versus the CP group.
c*P < 0.05, **P < 0.01, and ***P < 0.001.

4.3. Histopathological Findings

Glomerular and tubular structure of kidneys in the
control group (Figure 2A) was similar to that of the ZM
group (Figure 2B). CP treatment induced degeneration
of epithelial cells, infiltration of leukocytes, atrophy of
tubules and glomeruli, widening of Bowman’s space, py-
knosis of renal epithelium nuclei, and penetration of pro-
tein in the renal proximal tubules (Figure 2C). These find-
ings were improved in the CP + ZM group (Figure 2D). ZM
therapy also ameliorated these histopathological alterna-
tions. Renal injury, as shown in Figure 3, in the CP group
had a higher mean score than other groups. The injury
score of the CP group was 2.5±0.55, while it was 1.33±0.52
in the CP + ZM group; the difference between groups was
statistically significant (P < 0.006).

4.4. Immunohistochemical Findings

Caspase-3 positive cells were colored brown in stain-
ing. Section of kidney in the control and ZM groups
showed no caspase-3 immunoreactivity. Immunoreactiv-
ity of caspase-3 was severe to moderate in the tubular
epithelial cells of the cortex or medulla of kidney. Im-
munoreactivity of caspase-3 in the epithelial cells was as-
sessed using staining technique and the results indicated
mild immunoreactivity in the ZM + CP group compared
with the CP group (Figure 4). The histograms of the semi-
quantitative analysis of caspase-3 detection using IHC tech-
nique in the study groups are shown in Figure 5. The
most intense immunoreactivity of caspase-3 confirmed by
semi-quantitative analysis was observed in CP-treated mice
(19.23±6.97) compared with the other groups. ZM therapy
decreased the intensity of immunoreactivity of caspase-3
(11.28 ± 4.66). Immunoreactivity level of caspase-3 in the
control group was similar to that of the ZM group.

5. Discussion

Nephrotoxicity is one of the side effects of chemother-
apy drugs in patients with cancer (1). In the current study,
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Figure 1. Effect of ZM against CP-induced renal damage on MDA, GSH, and PC levels; data are expressed as mean± SD. a, versus control group; b, versus ZM group; and c, versus
CP group. *P < 0.05, **P < 0.01 and ***P < 0.001. malondialdehyde, MDA; glutathione, GSH; protein carbonyl, PC.

Figure 2. Photomicrographs show the effects of ZM, CP, and CP + ZM on the histological architecture of kidneys. The control (A), the ZM (B), the CP (C) and the CP + ZM
(D) groups. Normal structure in the control group (A), renal tubules with wider lumen (head arrow), glomerular atrophy, dilatations of the bowman capsule (black arrow),
detachment (white arrow), pyknotic nuclei of renal epithelium were observed in the CP group Mild disorganization, degeneration, edema and congestion (D) were observed
in the CP + ZM group, and ZM improved these changes. (PAS staining, mag. ×400), scale bar = 100 µm.

administration of a single dose of CP (10 mg/kg) induced
oxidative stress and a typical pattern of nephrotoxicity,
such as a significant increase in creatinine and BUN levels.
Also, CP increased immunoreactivity of caspase-3. How-

ever, ZM therapy in CP-treated mice improved oxidative
stress parameters, renal failure indices, and apoptosis.

In CP therapy, increased generation of ROS induces tox-
icity (2). ROS directly affects proteins, lipids, and nucleic
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Figure 3. Tubular injury was scored in renal tissue. Data are expressed as mean ±
SD. The highest score belonged to the CP group. ZM decreased renal injury score in
the ZM + CP group. a, versus the control group; b, versus the ZM group; and c, the
versus CP group. *P < 0.05; **P < 0.01; ***P < 0.001.

acids of cells and induces cellular injury and necrosis in
the different tissue (23). The current study findings showed
that CP significantly increased MDA as lipid peroxidation
marker and decreased GSH that confirmed induction of ox-
idative stress. Some studies reported increased MDA levels
due to CP-induced nephrotoxicity (3). GSH, as the most im-
portant intracellular antioxidant, plays an important role
in the repair of damages caused by oxidative stress (24).
Also, CP, by increasing the ROS, induces the oxidation of
proteins, and subsequently, increases the carbonyl protein
levels (25). In the current study, CP therapy increased MDA
and PC content and decreased GSH levels in the kidney;
these findings were in line with those of other studies (25,
26). Oxidative stress is produced by the imbalance between
pro-oxidant and antioxidant chemical species. Therefore,
antioxidant administration can reduce oxidative damage,
which delays the progression of kidney injury. ZM, due
to its antioxidant properties, alleviated oxidative stress
and lipid peroxidation in the current study. Antioxidant
enzymes are the first line of defense against ROS. HPLC
analysis showed that ZM contains thymol and carvacrol
as phenolic compounds (18, 19). Some other studies also
showed that these compounds, with scavenging free radi-
cals can protect tissue against oxidative stress and improve
injury by increasing GSH and reducing lipid peroxidation
(27). The results of the current study suggested that ZM by
maintaining antioxidant capacity may have nephroprotec-
tive activity. In CP therapy, necrosis and epithelial cell in-
jury mainly localize to S3 subsegment of proximal tubules
(28). Other studies demonstrated protective effects of ZM
against nephrotoxicity induced by gentamicin (29). Also,

ZM could protect liver against CP (30). In the present study,
ZM supplementation in CP-treated mice greatly decreased
histopathological alterations and significantly improved
the histoarchitecture of renal tubules that was approxi-
mately close to the findings in the control group. Crea-
tinine and BUN are the indicators of kidney dysfunction
(2). In the present study, ZM mitigated tubulointerstitial
injuries and renal dysfunction in CP-treated mice. Also, ZM
recovered renal function close to normal levels when co-
administered with CP.

CP is a simple inorganic molecule that binds to DNA
and leads to inter- and intra-strand cross-links formation.
Cross-linking of DNA induces DNA damage that can lead to
irreversible injury and cell death (31). On the other hand,
ROS is an important factor that induces apoptosis by the
activation of caspases pathways. Caspase-3 as an essential
apoptotic effector, through affecting cytoskeletal and nu-
clear chromatin, induces apoptosis (32). Therefore, anti-
apoptotic agents are capable of minimizing apoptosis in
nephrotoxicity induced by CP (33). In the current study,
results of IHC assay and caspase-3 positive cells indicated
a significant DNA damage induced by CP in the renal ep-
ithelial cells. Caspase-3 activation was induced eight hours
after CP treatment and its amount increased by 54 times
after 24 hours (34). The current study also demonstrated
that treatment with ZM in CP-treated mice significantly de-
creased apoptosis in kidney. A study showed that thymol
can significantly attenuate CP-induced nephrotoxicity (17).
Also, thymol and carvacrol, as bioactive components of ZM,
can decrease oxidative stress, inflammation, and apopto-
sis. They also proved that these components have protec-
tive effect against nephrotoxicity induced by CP (27).

In summary, the renal cell injury induced by CP. In ad-
dition, the renal dysfunction factors in CP-treated mice
were markedly alleviated by ZM extract. The nephropro-
tective effect of ZM was associated with the reduction of
oxidative stress and apoptosis. These findings proved that
ZM has a nephroprotective effect via anti-oxidant and anti-
apoptotic properties.
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Figure 4. In the control and ZM groups, positive cells were not detected (A and B). Immunohistochemical staining demonstrated the caspase-3 immunoreactivity in the CP
group that was remarkable in tubular epithelial cells (black arrows) (C). ZM therapy diminished caspase-3 immunoreactivity in CP-treated mice (D). (mag. ×400), scale bar =
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