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Abstract

Background: Blood-brain barrier (BBB), as well-known protection for the brain, plays an active role in normal homeostasis. It might
be changed by a range of inflammatory mediators to have a role in sickness behaviors.
Objectives: Regarding the anti-inflammatory effects of thymoquinone (TQ), its protection against BBB permeability, as a possible
mechanism for protective effects against sickness behaviors elicited by lipopolysaccharide (LPS), was evaluated in rats.
Methods: The animals were grouped as follows and treated (n = 10 in each): (1) control (saline); (2) LPS 1 mg/kg, was injected two
hours before behavioral tests for two weeks; (3-5) 2, 5, and 10 mg/kg TQ, respectively was injected 30 min before LPS injection. Open-
field (OF), elevated plus-maze (EPM) and Forced Swimming test (FST) were done. Finally, the animals were anesthetized to evaluate
for BBB permeability using Evans blue (EB) dye method.
Results: Compared with control, LPS decreased the peripheral distance and crossing and also total crossing and distance in OF, (P
< 0.01 - P < 0.001). The central crossing and distance and central time in all three treatment groups were more than LPS (P < 0.05
- P < 0.001). LPS also reduced the entries and the time spent in the open arm while increased the time spent in the closed arm in
EPM (P < 0.05 - P < 0.001). The effects of LPS were reversed by TQ (P < 0.05 - P < 0.001). In FST, the immobility time and active time
were increased and decreased by LPS compared with control (P < 0.001), respectively. In all three TQ-treated groups, the active and
climbing times were more while the immobility time was fewer than the LPS (P < 0.05 - P < 0.001). The animals of the LPS group
showed more EB dye content in their brain tissue than the control group (P < 0.05 - P < 0.001). TQ significantly reduced EB dye
content of the brain tissues (P < 0.05 - P < 0.001).
Conclusions: According to this study, protection against BBB permeability as a possible mechanism for the protective effects of TQ
against sickness behaviors induced by LPS might be suggested.
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1. Background

The blood-brain barrier (BBB) plays a protective role
for the brain by limiting the entry of neurotoxic blood-
derived products into the brain (1). This layer that con-
sists of specialized endothelial cells and surrounding peri-
cytes and astrocytes is so sensitive to inflammatory insults,
which can result in numerous neurocognitive syndromes
(2). Several factors can destroy the BBB of which inflam-
mation, that appears immediately following the insult, is
the most common cause (3). Inflammation in the brain

is one of the most causative factors in neurological dis-
eases like depression (4), Alzheimer (5), multiple sclerosis
(6) and Parkinson (7). It also seems to be responsible for
behavioral responses that are known collectively as sick-
ness behavior such as impairment of cognitive abilities, fa-
tigue, and malaise, decreased locomotor, body weight and
appetite (8). Inflammatory markers, including interleukin
(IL)-1β, tumor necrosis factor (TNF-α), and IL-6, which com-
municate with the central nervous system (CNS) by va-
gal afferents and crossing the BBB, damage synapses and
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neurons, and ultimately lead to cognitive dysfunction (9).
Lipopolysaccharide (LPS), is a piece of Gram-negative bacte-
ria and is well-known as a potent inducer of inflammation.
It is suggested to be able to increase BBB permeability by
releasing cytokines (e.g., TNF-α, IL-6, IL-1β), prostaglandin
E2, and nitric oxide (NO) (10, 11).

Anti-inflammatory agents are suggested to be useful to
protect the BBB. Thymoquinone (TQ) a well-known compo-
nent of Nigella sativa (NS) has been frequently reported to
have anti-inflammatory effects (12-14). Other therapeutic
effects of TQ consist of neuroprotective, antioxidant, anti-
convulsant, and anti-tumor activity (15, 16).

2. Objectives

In this study, protection against BBB permeability, as
a possible mechanism for protective effects of TQ against
sickness behaviors induced by LPS, was investigated in rats.

3. Methods

3.1. Animals and Treatments

Male Wistar rats were obtained from a local animal cen-
ter at Mashhad University of Medical Sciences for the exper-
iments. They had a 70 - 80 days old and 240 ± 10 g weight.
They were housed under standard status (temperature 22
± 2°C, humidity of 54± 2%, and 12 h light/dark cycle). Food
and water were freely accessible. Fifty of the rats were di-
vided into five groups and treated (n = 10 in each group):
(1) The animals in the control group received saline; (2) the
rats in LPS group were injected by LPS (1mg/kg/day; i.p.);
(3-5) the animals in these three groups received different
doses of TQ (2 mg/kg in LPS-TQ 2, 5 mg/kg in LPS-TQ 5, and
10 mg/kg in LPS-TQ 10 group) and were then injected by
LPS. The treatments were done for one week and were con-
tinued during behavioral tests. TQ was administered 30
min before LPS. LPS was injected 120 min before Behavioral
tests. Both LPS and TQ were obtained from Sigma-Aldrich
Company (Sigma Chemical Co). The drugs were dissolved
in sterile saline prior to injection.

3.2. Behavioral Procedures

One week after the injection, an activity of the animals
was evaluated in open-field (OF) by placing the rats into
the center of a clear Plexiglas (100 × 100cm) for 5 min.
A dim light was provided in a room and open-field was
done. Activity was quantitated by a digital camera and
the parameters such as the number of crossing in the cen-
tral and peripheral zones, the traveled distance in central

and peripheral zones, the time spent in central and periph-
eral zones, the total crossing number and traveled distance
were recorded (16).

Elevated plus-maze (EPM) was a device designed with
two closed and two open arms. The device was set 100 cm
above the floor. Each rat was placed in the center of the
arms and allowed to move inside the arms. Finally, the
time spent and the number of entries into the open and
closed arms were recorded. Forced Swimming test (FST)
was performed for all groups as previously reported (16). In
summary, each rat was compelled to swim in a water-filled
tank. The total duration of immobility, as well as active and
climbing times were recorded.

3.3. Blood-Brain Barrier Permeability

After completing the tests, the animals were anes-
thetized with urethane (1.6 g/kg) (17), then 20 mg/kg Evans
blue dye was injected intravenously. After circulating for
20 minutes, in order to separate the brain, they were
slaughtered. After launder with saline and drying, the
tissues (cortex, cerebellum, and brain stem) were sepa-
rately weighed and immersed in 5 mL formamide for 72
hours (18). The samples were homogenized with 2 ml
trichloroacetic acid (TCA) 50% and then centrifuged (1500
rpm, 10 min). The absorbance of each tissue was measured
at 632 nm (19).

3.4. Statistical Analysis

The data were presented as mean ± standard error of
the mean (SEM). One-way ANOVA and Tuckey post hoc com-
parison tests were carried out. The P < 0.05 was considered
statistically significant.

4. Results

4.1. Open-Field

According to the results, no significant difference was
observed in the central crossing number between LPS and
control groups (Figure 1A). The crossing number in the cen-
tral zone by the animals of LPS-TQ 2 and LPS-TQ 5 groups
was significantly more than the LPS group (P < 0.05-P <
0.001; Figure 1A); however, no significant difference was ob-
served between LPS-TQ 10 and LPS groups (Figure 1A). The
results also showed that the animals of LPS-TQ 5 group had
a higher crossing number compared to the control group
(P < 0.001). Central zone traveled distance was not signifi-
cant between the LPS and control groups; however, this pa-
rameter in all three TQ-treated groups was more than LPS
group (P < 0.05 - P < 0.001; Figure 1B). The animals of LPS-TQ
5 group had a longer central distance compared to the con-
trol group (P < 0.001). As shown in Figure 1C, the animals
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of the LPS group also spent a significant (P < 0.05) lower
time in the central segment than the control group. How-
ever, treatment with TQ reversed this LPS-induced change
and there was no significant difference between the LPS-TQ
(2, 5, 10) and LPS groups.

The results also revealed that the crossing number in
the peripheral segment by the animals of the LPS group
was fewer than that of the control group (P < 0.001; Figure
2A). According to Figure 2A, the peripheral crossing num-
ber by the rats of LPS-TQ 5 group was significantly more
than the LPS group (P < 0.001; Figure 2A); however, no
significant difference was observed between LPS-TQ 2, LPS-
TQ 10 and LPS groups (Figure 2A). The peripheral zone dis-
tance in LPS and LPS-TQ2 groups was lower than the con-
trol group (P < 0.001and P < 0.05, respectively; Figure
2B). Peripheral zone distance in the LPS-TQ 5 group was
more than the LPS group (P < 0.05; Figure 2B). However,
no significant difference was observed in time spent in the
peripheral zone between the LPS-TQ 2, LPS-TQ 10, and LPS
groups (Figure 2B). No significant difference was seen be-
tween the groups when the peripheral zone time was com-
pared between control and LPS groups as well as when the
TQ-treated group was compared with the LPS group (Figure
2C).

Additionally, the total crossing in the LPS group was
lower than the control group (P < 0.01). The total crossing
number in LPS-TQ 5 group was significantly more than the
LPS group (P < 0.001, Figure 3A). No significant difference
was seen between groups of LPS-TQ 2, LPS-TQ 10, and LPS. As
shown in Figure 3B, the total distance in the LPS group was
shorter than the control (P < 0.01) and LPS-TQ 5 (P < 0.05;
Figure 3B) groups. But, there was no significant difference
between LPS-TQ 2, LPS-TQ 10, and LPS groups. In addition,
total distance in the LPS-TQ 2 group was lower than that in
the control group (Figure 3B).

4.2. Elevated Plus-Maze

The open arm entries in the LPS group were lower than
the control group (P < 0.01; Figure 4A). In all three TQ-
treated groups, the open arm entries were more than the
LPS group (P < 0.05 - P < 0.001; Figure 4A). The open arm
entries in the LPS-TQ 10 group were more than the control
group (P < 0.05; Figure 4A). The animals of the LPS-treated
group also spent a long time in the open arm than the con-
trol ones (P < 0.05; Figure 4B). Treatment by all three doses
of TQ prolonged the time spent in open arms (P < 0.01 - P <
0.001; Figure 4B). The open arm time in the LPS-TQ 10 group
was more than the control group (P < 0.01; Figure 4B).

The results also showed that the animals of LPS, LPS-TQ
2 and LPS-TQ 5 groups were entered more frequently to the
closed arm than the control ones (P < 0.001, P < 0.05, and
P < 0.05 respectively; Figure 5A). No significant difference

was observed when the entries to the closed arm were com-
pared between LPS-TQ 5 and LPS groups, while this parame-
ter in LPS-TQ 2 and LPS-TQ 10 groups was more than the LPS
group (P < 0.05 - P < 0.001; Figure 5A). The time spent in the
closed arm was no significantly different between the two
control and LPS groups (Figure 5B). Compared to the LPS
group, the LPS-TQ 5 group spent a lower time in the closed
arm (P < 0.05; Figure 5B); however, there was no difference
between the LPS-TQ 2, LPS-TQ 10, and LPS groups.

4.3. Forced Swimming Test

The results showed that LPS injection increased the im-
mobility times in the LPS group compared to the control
group (P < 0.001; Figure 6A). This parameter in all three TQ-
treated groups was lower than the LPS group (P < 0.05 - P <
0.001; Figure 6A). Immobility times also in LPS-TQ 2, LPS-TQ
5, and LPS-TQ 10 groups were longer than that in the control
group (P < 0.05 - P < 0.001; Figure 6A). Additionally, com-
pared to the control group, LPS injection shortened the ac-
tive times in the LPS group (P < 0.001; Figure 6B). However,
this parameter in all three TQ-treated groups were more
than the LPS group (P < 0.001; Figure 6B). The times also
in LPS-TQ 5 and LPS-TQ 10 groups were shorter than that in
the control group (P < 0.001; Figure 6B).

4.4. Blood-Brain Barrier Permeability

EB dye content in the brain tissues, including cortex,
brain stem, and cerebellum of the LPS group was signifi-
cantly more than the control group (P < 0.05 - P < 0.001;
Figure 7A-C). Treatment by all three doses of the extract re-
duced EB dye content of the cortical tissues compared to
the LPS group (P < 0.05 - P < 0.001; Figure 7A). The two high-
est doses of TQ also attenuated the EB content of the brain
stem tissues (P < 0.05 - P < 0.001; Figure 7B). As Figure 7C
shows there was no significant difference between the TQ-
treated and LPS groups in the BBB permeability of cerebel-
lum (Figure 7C).

5. Discussion

In the current study, we showed that TQ was able to
protect BBB and prevent the sickness behaviors induced
by LPS in rats. Anatomical studies of BBB show that it is
comprised of especially endothelial cells. These barriers
are vital for normal physiological functions of the brain
and spinal cord (1). Moreover, the BBB prevents free circu-
lation of subtends between blood and CNS due to a high
density of tight junction. This structure provides condi-
tions for the proper functioning of the BBB (20). Studies
show that some conditions affect this layer and change the
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Figure 1. A, Crossing; B, Distance; and C, Time in the central zone in the open field test. Data are shown as the mean ± standard error of the mean (SEM) (number of animals
in each group is 10). *, P < 0.05; ***, P < 0.001 compared to the control group; +, P < 0.05; and +++, P < 0.001 compared to the LPS group.

permeability of the BBB (21), one of these conditions is in-
flammation (22). So inflammatory processes are known to
disrupt BBB integrity (23, 24).

Inflammation is a physiological and primary response
to various stimuli such as infection and tissue wounds.

Inflammatory responses, on the one hand, stimulate the
innate and acquired immune system and on the other
hand, affect the epithelial duct as well as modify neuroen-
docrine status and behavioral changes, which lead to en-
ergy preservation such as increased sleep, lethargy, re-
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Figure 2. A, Crossing; B, Distance; and C, Time in the peripheral zone in the open field test. Data are shown as the mean ± standard error of the mean (SEM) (number of
animals in each group is 10). *, P < 0.05; ***, P < 0.001 compared to control group; +, P < 0.05; and +++, P < 0.001 compared to the LPS group.

duced appetite, and fever (25, 26). According to several
studies, LPS, as a bacterial endotoxin and a powerful in-
ducer of cytokine release, is frequently used to induce a
common model for creating inflammation (23). Its ef-
fect is also known to cause neuronal inflammation (27).
LPS leads to a release of NO, prostaglandins, and inflam-

matory cytokines such as IL-1, TNF-a, and IL-6 by activat-
ing macrophages through binding to toll-like receptor-4
(TLR4). In this condition, brain endothelial cells in the face
of these materials lose their integrity (28-30). In this study,
a higher EB dye content in the brain tissues of LPS-treated
rats compared with the control ones confirms the destruc-
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Figure 3. A, Total crossing; and B, Distance in the open field test. Data are shown as the mean± standard error of the mean (SEM) (number of animals in each group is 10). *, P
< 0.05; **, P < 0.01; and ***, P < 0.001 compared to control group; +, P < 0.05; and +++, P < 0.001 compared to the LPS group.

tive effect of LPS on BBB. It has been indicated that LPS
induces BBB disruption through a cyclooxygenase (COX)-
dependent pathway, possibly one that involves secretion
of cytokines from the brain endothelial cells (31). In addi-
tion, experimental animal studies suggest that TNF-α al-
ters the permeability of the BBB and due to a migration of
leukocytes into the CNS by enhancing adhesion between
leukocytes and BECs (32). On the other hand, TNF-α also
induces NO generation, which later contributes to disrup-
tion of the BBB (33). It has been suggested that penetration
of LPS to the BBB might be responsible for the events such
as lethargy, fatigue, increased sleep, and reduced mobility
and that collectively known as sickness behaviors (34).

In this study, TQ increased central crossing, central
traveled distance, peripheral crossing, peripheral traveled

distance, total crossing and total traveled distance in OF
test. Considering all of these findings, accompanying pro-
tective effects of TQ against BBB permeability with the ben-
eficial effects on sickness behaviors in LPS-induced model
of rats might be suggested. Other studies also reported
that TQ exerts its antioxidant and anti-inflammatory ef-
fects through inhibition of cytokines release (TNF-α, IL-1β).
Studies show that TQ has also been able to suppress ox-
idative stress-induced neuropathy accompanying by a re-
duced level in nuclear factor kappa B activity in the brain
and spinal cord (35, 36). In the present study, we did not
compare the effects of TQ on BBB in different regions, in-
cluding cortex, cerebellum, and brain stem, and the aim of
this study was not such a comparison. However, at a glance,
it seems that EB content in the cerebellum and brain stem
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Figure 4. A, Open arm entries; and B, Time in the elevated plus-maze test. Data are shown as the mean ± standard error of the mean (SEM) (number of animals in each group
is 10). *, P < 0.05; **, P < 0.01 compared to the control group; +, P < 0.05; ++, P < 0.01; and +++, P < 0.001 compared to the LPS group.

tissues of the control group was more than that of cortex.
We did not compare the effects of LPS on BBB between dif-
ferent parts of the brain. The effects of TQ have not also
been previously evaluated but considering the previous
studies, it seems that BBB is tighter in the cortex than the

brain stem and the cerebellum (37-39); however, it needs to
be more investigated in the future.

In this study, performances of the LPS-treated rats in
EPM and OP tests also confirmed accompanying sickness
behaviors with increasing of BBB permeability. Adminis-
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Figure 5. A, Closed arm entries; and B, time in the elevated plus-maze test. Data are shown as the mean± standard error of the mean (SEM) (number of animals in each group
is 10). *, P < 0.05; ***, P < 0.001 compared to the control group; +, P < 0.05; and +++, P < 0.001 compared to the LPS group.

tration of LPS decreased the time spent in and the number
of entries into the open arms of EPM and the time spent
in a central area of apparatus, which might be considered
a sign of anxiety-like behaviors in LPS-treated rats (16, 40).
LPS also decreased the entries into the closed arm in EPM.
The animals of the LPS group also had a lower crossing and
a shorter traveled distance in the peripheral zone of appa-
ratus. LPS also decreased the total traveled distance and to-

tal crossing number in the OF test. All of these findings con-
firm sickness behaviors induced by LPS injection (16, 40).

Medicinal plants have indicated considerable thera-
peutic effects possibly because of having several com-
pounds with strong antioxidant and anti-inflammatory at-
tributes (41). Owing to more adverse effects of synthetic an-
tidepressants and on the other hand, expanding safe and
effective agents from traditional herbs, researchers incline
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Figure 6. A, Immobility; and B, Active times in the forced swimming test. Data are shown as the mean ± standard error of the mean (SEM) (number of animals in each group
is 10). *, P < 0.05; **, P < 0.01; ***, P < 0.001 compared to the control group; +, P < 0.05; and +++, P < 0.001 compared to the LPS group.

to use medicinal plants, and they found that a large num-
ber of antioxidants showed some beneficial effects on hu-
man health, as well as many of them such as NS, showed
antidepressant-like effects (42). NS commonly known as
the black seed is used as a natural treatment for some

diseases. Researches have shown that the most effective
treatment of NS is especially related to its constituent TQ
(43, 44). It has been previously reported that TQ exerts
an antidepressant-like effect by inhibiting the uptake of
norepinephrine, serotonin, and dopamine (45). Perveen
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Figure 7. EB dye content in the cortex (A), brain stem (B), and cerebellum(C). Data are shown as mean ± standard error of the mean (SEM) (number of animals in each group
is 10). *, P < 0.05; ***, P < 0.001 compared to the control group; +, P < 0.05; ++, P < 0.01; and +++, P < 0.001 compared to the LPS group.

et al. (cited in Aquib) reported that TQ increased concen-
trations of 5 hydroxytryptamine (5-HT) and 5-hydroxy in-
dole acetic acid (5-HIAA) in rats’ brains (46). Meanwhile,
TQ is suggested to apply the antidepressant-like effect
through antioxidant effects and protection against lipid

peroxidation (47). Moreover, various studies have proved
anti-inflammatory effects of TQ (46, 48). In this study, all
doses of TQ decreased immobility times, while increased
active time in FST, which confirms its anti-depression-like
effects in an LPS-induced model in rats. As was mentioned
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above, BBB impairment has an important role in behav-
ioral impairments due to neuroinflammation. Therefore,
besides other mechanism(s) which were explained, protec-
tion against BBB rupture was examined as a mechanism for
the beneficial effects of TQ in the brain. The results showed
that EB dye contents of the brains of TQ-treated rats were
lower than that of LPS-treated ones. EPM is a well-known
experiment to assess anti-anxiety compounds. The com-
pounds with anti-anxiety effects remarkably increased the
entries into, and time spent in the open arms (49, 50). In
this study, all doses of TQ increased the open arm entries
and the time spent in the open arms of EPM, which might
be considered its anti-anxiety effects. Supporting, TQ has
previously shown to have anti-anxiety-like activity possibly
through modulation of NO and gamma-aminobutyric acid
(GABA) (51). The FST is broadly utilized for screening sub-
stances for potential antidepressant effects (52, 53). In this
study, in addition to increasing BBB permeability, LPS in-
jection increased immobility time while, decreased active
time in the FST, which might be considered a depression-
like behavior (54, 55) as well as a sign of sickness behav-
ior induced by LPS in rats (16, 40). Accordingly, Hines et al.
(56) also found that after LPS injection, the BBB breakdown
occurred, which comforted the migration of macrophages
into the brain; thus worsened neuroinflammatory and re-
sulted in sickness behavior. Other studies also demon-
strated that exposure to LPS reduced serotonin and nora-
drenaline levels in the brain and caused a change in emo-
tion (57). Previously, it has been reported that LPS induces
neuroinflammation by increasing BBB permeability, lead-
ing to neuronal damage, especially ineffective brain areas
in emotion, including the limbic system (10). It has also
been suggested that BBB disturbance may contribute to
some neuropathology conditions such as multiple sclero-
sis, epilepsy and Alzheimer’s disease (58). On the other
hand, inflammatory response in the brain has been found
to create huge amounts of reactive oxygen species, which
prompt oxidative stress and exacerbate the BBB damage
(59, 60).

In conclusion, the results of this study showed that
administration of LPS induced sickness behaviors in rats,
which reflected impaired performances of the rats in FST,
OF, and EPM. The sickness behaviors were accompanied by
BBB impairments. TQ protected BBB disruption induced by
LPS and also improved performances of the rats in behav-
ioral tests. In the present study, considering the results of
OF test and EPM in which TQ improved performances of the
rats compared to the control group, it seems that TQ by it-
self has an anti-anxiety effect. Considering these results,
besides other mechanism(s) which have been previously
explained, protection against BBB permeability, as a possi-
ble mechanism for protective effects of TQ against sickness

behaviors induced by LPS, is suggested; however, it needs
to be more investigated.
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