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Abstract

Background: Cerebral ischemia is an important cause of morbidity and mortality worldwide. Dimethyl fumarate (DMF) is indi-
cated for the treatment of patients with relapsing forms of Multiple Sclerosis and psoriasis.
Objectives: In this study, the effect of DMF on memory and learning impairments and nitrosative stress after cerebral ischemia in
rats, was evaluated.
Methods: Cerebral ischemia was induced via common carotid artery occlusion (CCAO). Rats were randomly divided into three
groups (N = 5). Group I included Sham-operated animals who underwent surgery without arterial occlusions, group II (control
ischemic) underwent surgery to induce transient global cerebral ischemia for 20 min and received 0.2 - 0.25 mL of distilled water,
twice a day by oral gavage, group III included rats which underwent cerebral ischemia and then received DMF (15 mg/kg, twice daily,
for 1 week) by oral gavage. Morris water maze test was used to assess spatial memory. Nitric oxide (NO) level in the hippocampus
was measured using Griess test.
Results: Treatment of rats with DMF (15 mg/kg, orally, twice daily for 7 days) resulted in a significant decrease in escape latency
during training trials. Besides, the time spent in the target quadrant and the number of crossings over the platform area were
significantly increased in the DMF-treated rats which were accompanied by a decrease in the proximity to the platform in the probe
trial. Furthermore, the results of the Griess assay indicated a significant reduction in the NO levels in the hippocampus of DMF-
treated rats.
Conclusions: Overall, our findings indicate that DMF improves memory impairment induced by cerebral ischemia/reperfusion
injury in rats through the suppression of nitrosative stress in the hippocampus.
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1. Background

Ischemic brain injury is one of the most important
causes of disability and mortality in adults worldwide that
results from cerebral circulatory arrest (1, 2). Transient
global cerebral ischemia (TGCI) can cause cognitive, behav-
ioral, learning and memory impairments (2, 3). Character-
ized mechanisms of post-TGCI neuronal damage consist of
diminished blood flow to the brain, mitochondrial dam-
age, free radical development, destruction of membrane,
injury to the blood vessels, prevention of protein synthesis,
inflammation, brain edema formation and finally delayed
neuronal death of the CA1 zone of the hippocampus (4).

Ischemia/reperfusion injury via lipid peroxidation
leads to increased reactive oxygen species (ROS) and there-
fore causes mitochondrial dysfunction, interruption of
the membrane, alterations in permeability and ultimately

cell death (5).

Nitric oxide (NO) is another factor involved in injuries
after cerebral ischemia/reperfusion, that is generated by
various sources such as neurons and glia (6), and can
cause increased levels of ROS, consumption of adenosine
triphosphate (ATP) and neuronal death (7).

There have been numerous researches concentrating
on several neuroprotective agents for preventing the sec-
ondary neuronal damage following ischemia/reperfusion.
Despite all efforts, at present we do not have an approved
pharmacological therapy for preventing neuronal injuries
following cerebral ischemia/reperfusion.

Dimethyl fumarate (DMF) is the methyl ester of fu-
maric acid with confirmed indications in patients with
chronic plaque psoriasis, a dermatological sickness with
immune system dysfunction and relapsing-remitting mul-
tiple sclerosis (8).
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2. Objectives

The aim of this novel study was to investigate the ef-
fects of DMF on memory impairment and NO levels follow-
ing cerebral ischemia in rats.

3. Methods

3.1. Chemicals and Drugs

Chemicals were bought from Sigma-Aldrich Chemical
Co. As per the safety sheet issued by Sigma-Aldrich, Oral
LD50 in rat is 2240 mg/kg.

DMF was dissolved in distilled water and was used at
a dosage of 15 mg/kg body weight based on previous re-
searches (9), twice daily (every 12 hours) via oral gavage for
a period of 7 days after ischemia.

Chemical compounds studied in this article: DMF (Pub-
Chem CID: 637568).

3.2. Animal

The male Wistar rats, 200 - 250 g, were obtained from
the animal house of Shahid Beheshti University of Medical
Sciences, Tehran, Iran, and maintained under steady con-
ditions (12 h/12 h light/dark cycle), at a controlled temper-
ature of 23 ± 2ºC. Standard pellet diet and tap water were
available.

3.3. Study Design

Rats were randomly allocated to three groups (N =
5). Group I included Sham-operated animals undergoing
surgery without arterial occlusions, group II (control is-
chemic) received 0.2 - 0.25 mL of distilled water, twice a day
by oral gavage, group III included rats undergoing surgery
and cerebral ischemia and then received DMF (15 mg/kg,
twice daily, for 1 week) by oral gavage.

3.4. Surgical Procedure

Before surgery procedure, rats were anesthetized with
intraperitoneal administration of xylazine (5 mg/kg) and
ketamine hydrochloride (50 mg/kg) (10).

Transient global cerebral ischemia was performed by
common carotid arteries occlusion (CCAO) for 20 min, us-
ing the microvascular clamps. Subsequently, both clamps
were removed and both arteries inspected for immediate
reperfusion (11).

3.5. Morris Water Maze

The water maze is a circular tank 120 cm in diameter
and 60 cm in height. The tank was filled with water (23 ±
2ºC) to a depth of 40 cm. The maze was located in a room
containing extra-maze cues (posters). The maze was di-
vided geographically into four quadrants (northeast (NE),
northwest (NW), southeast (SE), southwest (SW)) and start-
ing positions (north (N), south (S), east (E), west (W)) that
were equally spaced around the perimeter of the pool. A
hidden circular platform (diameter: 12 cm) was installed in
the center of the NW quadrant, 1.5 cm below the surface of
the water. A video camera was mounted directly above the
maze to record the rats’ swim paths. A computer tracking
system was used to measure the escape latency, time spent,
traveled distance, the number of crossings, average prox-
imity and average swimming speeds in the target quad-
rant (12, 13).

3.6. Measurement of Nitrite in the Hippocampus

The hippocampus was quickly removed following de-
capitation and homogenized (5:1 v/w) in ice-cold 0.1 M
phosphate buffer, pH 7.4. The nitrite concentration in
the hippocampal tissue was utilized as a measure of NO
generation. Which was determined by measuring nitrite
accumulation in the medium by Griess reagent (1% sul-
fanilamide and 0.1% N-(1-naphthyl)-ethylenediamine dihy-
drochloride in 5% H3PO4). Then, 100µL of supernatant and
100µL Griess reagent were mixed and incubated for 5 min.
The absorption was estimated in a microplate reader at 540
nm (14).

3.7. Statistical Analysis

All the results are presented as mean± SEM. Statistical
analyses were carried out using PRISM 6.0. Analysis of vari-
ance test was applied to determine statistical significance.
A P value < 0.05 was regarded as statistically significant.

4. Results

4.1. Effect of DMF on Spatial Memory in the Morris Water Maze
Test

Results analysis of the Morris water maze during train-
ing trials (first 3 days), escape latency (time to find the hid-
den platform) in DMF (15 mg/kg) and sham groups were
significantly decreased (P < 0.05) in comparison with con-
trol group. eEscape latency on the third day of the train-
ing trial was the lowest (Figure 1). Additionally in probe
trial, time spent and traveled distance in goal quadrant
during the experiment, in DMF and sham groups were sig-
nificantly increased (P < 0.05) in comparison with con-
trol group (Figures 2 and 3, respectively) Furthermore, in
the probe trial the number of crossings on the platform’s
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place was significantly enhanced (P < 0.05) in DMF and
sham groups in comparison with control group (Figure 4).
Moreover, in the probe trial, mean proximity to platform in
DMF (15 mg/kg) was significantly different compared to the
control group (P < 0.05) (Figure 5) but average swimming
speed during the probe trial in Morris water maze test, did
not show a significant difference between groups (Figure
6).
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Figure 1. Escape latency time (mean± SEM) during training days, to reach a hidden
platform in rats treated by DMF (15 mg/kg, orally, twice daily, for 1 week) in the Mor-
ris water maze test. By Two-way ANOVA, *P < 0.05, **P < 0.01, significantly different
compared to the sham, +P < 0.05, ++P < 0.01, compared with the control group.
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Figure 2. Time spent (mean± SEM) in the goal quadrant during probe trial, by rats
treated with DMF (15 mg/kg, orally, twice daily, for 1 week) in the Morris water maze
test. **P < 0.01, significantly different compared to the sham, +P< 0.05 compared
with the control group.

4.2. Effect of DMF on NO Levels

According to the one-way ANOVA results of this study,
nitric oxide level of the hippocampus of control group
was increased compared to the sham group. But DMF (15
mg/kg, twice daily, for 1 week) prevented the rise of the lev-
els of NO [F (2, 12) = 11.18, P < 0.01] in the hippocampus of
rats subjected to ischemia/reperfusion injury (Figure 7).

Control Sham DMF

8

6

4

2

0

Tr
av

el
ed

 D
is

ta
n

ce
 (m

) 

Figure 3. Traveled distance (mean ± SEM) in the goal quadrant during probe trial
by rats treated with DMF (15 mg/kg, orally, twice daily, for 1 week) in the Morris water
maze test. *P < 0.05: significantly different compared to the sham, +P < 0.05 com-
pared with the control group.
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Figure 4. Number of crossing (mean ± SEM) in the goal quadrant during probe
trial, by rats treated with DMF (15 mg/kg, orally, twice daily, for 1 week) in the Morris
water maze test. *P < 0.05, compared with the sham group; +P < 0.05, compared
with the control group.

5. Discussion

Our research proposed the use of DMF for the man-
agement and prevention of memory impairments caused
by cerebral ischemia/reperfusion. In addition, we inves-
tigated the underlying mechanism of DMF with a focus
on nitrosative stress. Learning and memory impairments
represent the pathogenic advancement of the damage in-
duced by cerebral ischemia/reperfusion. Such damages
could lead to disabilities and restriction in social activities
(3, 15). In our study, we have seen a progress in learning
behaviors in rats treated with DMF compared to control
group, 7 days after the induction of ischemia by Morris wa-
ter maze test.
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Figure 5. Proximity (mean± SEM) to the platform during probe trial in rats treated
by DMF (15 mg/kg, orally, twice daily, for 1 week) in the Morris water maze test. **P <
0.05 compared with the sham group; +P < 0.05 compared with the control group.
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Figure 6. Swim speed (mean ± SEM) during the probe trial in rats treated by DMF
(15 mg/kg, orally, twice daily, for 1 week) in the Morris water maze test. No significant
difference was observed between groups on the average speeds of the rats.

Previously many studies have focused to nominate
a pharmacological intervention to attenuate cerebral is-
chemia injury and subsequent memory impairments and
to address that goal, several compounds such as ROS scav-
engers, glutamate receptor blockers, calcium channel in-
hibitors were applied (16), but none of them lead to an ap-
proved medication for the discussed indication, although
experimental studies on numerous neuroprotective and
anti-inflammatory agents are still ongoing.

The results obtained from Morris water maze, showed
that the rats treated with oral DMF, improved spatial mem-
ory, represented by reduction in escape latency (time to
find the platform) and proximity of rats to the platform’s
location as compared to the ischemia group. Also, DMF
significantly enhanced time spent in the target quadrant,
traveled distance and number of crossings in the goal
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Figure 7. Effect of treatment with DMF (15 mg/kg, orally, twice daily, for 1 week) on
the concentration of Nitric Oxide in the hippocampus of rats subjected to transient
cerebral ischemia/reperfusion. Data are reported as mean ± SEM; (n = 5/group). **P
< 0.01 compared with sham group; ++P < 0.01 compared with the control group.

quadrant in comparison with the ischemia group. No sig-
nificant difference was found in swimming speed between
the ischemia, DMF and Sham group in the probe trial, on
the 4th day of Morris water maze test. Hence the con-
cern that motor impairment upon surgery could affect our
data, can be excluded. From the other side as a result, since
the mean speeds of the rats in trial day were not differ sig-
nificantly between groups, the effects of DMF on spatial
navigation do not appear to be relevant to improvement
in motor ability.

Also in experiment comparing of escape latency in
each day, we observed that the escape latency on the third
day in the DMT-treated rats was significantly shorter in
comparison with the control group. The latter finding also
supports the other data that DMF might be able to improve
learning functionality of ischemic rats.

Enhanced levels of NO have been shown as another
factor involved in the injuries associated with cerebral is-
chemia/reperfusion and may worsen the primary damages
to neurons (17, 18). Furthermore, NO reacts with superox-
ide anion radical (O2

-) to produce per-oxynitrite, a very re-
active molecule in lipid oxidation, proteins and DNA; that
again leads to further increased inflammation, microglial
cells destruction and CNS injury (19, 20).

One of the major findings of our research, is that
DMF can prevent increased levels of NO after cerebral is-
chemia/reperfusion in rats hence, prevention of the boost
of NO, can be considered as another beneficial effect of
DMF in complications resulting from cerebral ischemia.
Some other studies have shown that prevention of in-
creased NO levels by various compounds including DMF
can be employed to restrain the progression of neurode-
generative diseases (21-23).
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5.1. Conclusions

Our results demonstrate that DMF improves cerebral
ischemia-induced learning and memory impairment, and
the promising memory-improvement effects of DMF may
be mediated through reduction of the levels of NO in the
hippocampus.
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