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Abstract

Background: Human ABCC3 (hABCC3) or multidrug resistance protein 3 (MRP3), third member of the subfamily C of the ABC pro-
teins, is associated with multidrug resistance and treatment failure in acute leukemia. Hence, targeting this protein might be a
useful approach to provide more effective drugs to overcome cancer drug resistance.
Objectives: The present study aimed at predicting the possible ligand binding sites (PBSs) on hABCC3 and examining the possible
binding of different chemotherapeutic drugs to this protein.
Methods: To predict the PBSs on the hABCC3 transporter, a three-dimensional homology model of hABCC3 was generated in the
current study based on bovine ABCC1 (bABCC1) using SWISS-MODEL and MODELLER programs, and then a molecular docking was
qualified. Finally, binding affinities of 14 ligands including chemotherapeutic and immunosuppressive drugs, in addition to hABCC3
inhibitors, for hABCC3 were evaluated using binding free energies and the corresponding scores. Molecular docking was performed
using AutoDock. Furthermore, Chimera, LigPlot, and Swiss PDB viewer (SPDBV) were used for interactive visualization and analysis
of molecular structures.
Results: The two PBSs on hABCC3 were predicted using the blind docking method. Docking results in both PBSs showed that vin-
cristine, doxorubicin, and daunorubicin had the highest binding affinities, respectively, with vincristine having the highest docking
score.
Conclusions: In the current study, three drugs with the highest affinity for hABCC3 were introduced in order to take a step toward
the possible hABCC3 targeting in drug-resistant acute leukemia. Furthermore, the application of in-silico methods in targeted can-
cer therapy, especially leukemia treatment, was highlighted.
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1. Background

Multidrug resistance (MDR) is a major obstacle to suc-

cessful chemotherapy, which leads to resistance to com-

bination chemotherapy (1). One of the most important

reasons for cancer drug resistance is to prevent the accu-

mulation of anticancer drugs within the malignant cells.

This general type of resistance is often caused by the

overexpression of one of the oldest protein superfami-

lies called ATP (adenosine triphosphate)-binding cassette

(ABC) transporters, which expel the drug molecules out

of dividing tumor cells (2). Therefore, inhibition of the

ABC transporters might be an effective approach to sen-

sitize the resistant cells to chemotherapy drugs (3). MDR

proteins (MRPs) are the transporters belonging to the “C”

branch of the ABC superfamily. These family members

transport and detoxify many chemically unrelated com-

pounds and hamper the success of cancer pharmacother-

apy (4). MRP3 or ABC subfamily C member 3 (ABCC3) is

expressed in several tissue, predominantly in the kidney,

liver, pancreas, and small intestine (5). ABCC3 gene is lo-

cated on chromosome 17q22 and consists of 31 exons. It en-

codes 1527 amino acids, and the resulting 170- and 190-kDa

membrane proteins have different glycosylation patterns.
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Human ABCC3 (hABCC3) is presumed to have three mem-

branes and two large cytoplasmic domains. These two cy-

toplasmic domains contain nucleotide binding domains

1 and 2 (NBD-1 and -2) (6). The hABCC3 can confer the re-

sistance against anticancer agents; a finding supported by

previous studies showing the hABCC3 overexpression in

multiple cancer types. Accordingly, it can be considered

as a prognostic marker and therapeutic target (3). To ex-

plore the exact mechanism of action of an ABC transporter,

its structure should precisely be explored. Despite efforts

to determine the three-dimensional (3D) structure of ABC

proteins, their high-resolution structure is still unknown

since eukaryotic transporters are refracted in structural

analysis (7).

Nowadays, in-silico models provide a fast, inexpensive,

and non-laborious screening platform with promising and

valuable results (8). In the current research, the homol-

ogy modeling of hABCC3 was presented using the crystal

structure of bovine ABCC1 (bABCC1) as a template. Fur-

thermore, its docking to combination chemotherapeutic

drugs was analyzed. Then, the results of the computa-

tional approaches were used to assess the binding char-

acteristics of hABCC3 to the acute leukemia therapeutic

agents such as etoposide, methotrexate, doxorubicin, vin-

cristine, mitoxantrone, idarubicin, cytarabine, daunoru-

bicin, prednisolone, and fludarabine, and four hABCC3

inhibitors including indomethacin, sulfinpyrazone, vera-

pamil, and glyburide were discussed.

2. Methods

2.1. Software

Two programs including SWISS-MODEL server

(https://swissmodel.expasy.org/) (9) and MODELLER 9.19

(10) were used to build homology models of hABCC3.

Then, predicted models were evaluated by PROCHECK 3.5

(11) and the web-based version of ProSA (12). Molecular

docking was performed by AutoDock 4.6.2 to combine

chemotherapeutic agents (13). Finally, UCSF Chimera 1.11.2

(14), LigPlot 1.4.5 (15), and Swiss PDB viewer 4.10 (SPDBV) (16)

were utilized for interactive visualization and molecular

structure analysis.

2.2. Sequence Alignment and Homology Modeling

The FASTA sequence of hABCC3 (accession number:

O15438) was retrieved from UniProt database (17) and used

to find a suitable template with the most similarity to

this transporter by basic local alignment search toolbox

(BLAST) at PDB database (18). The bABCC1 (PDB ID: 5UJ9) (19)

was an appropriate template for hABCC3. Then homology

modeling of hABCC3 was performed by MODELLER 9.19 and

SWISS-MODEL server.

2.3. Structure Analysis and Model Validation

The models of hABCC3 generated by SWISS-MODEL and

MODELLER 9.19 were assessed by the Ramachandran plot

(20) using PROCHECK, and checking the Z-score of struc-

tures obtained by ProSA (12). Finally, the model presented

by MODELLER was selected for subsequent studies based

on geometric and 3D alignment analyses. Then, the struc-

tures of the constructed hABCC3 model and the template

were compared by Chimera.

2.4. Selection of the Ligand Molecules

First, in vitro hABCC3 substrates and inhibitors, as well

as acute leukemia combination chemotherapeutic agents

were obtained from DrugBank (21) (supplementary file Ap-

pendix 1). Then, ligand coordinates were obtained from

DrugBank, PubChem Compound (22), and ZINC databases

(23) (supplementary file Appendix 2).

2.5. Blind Docking

Molecular docking was performed using AutoDock

4.6.2 software to detect the ligand binding sites and prob-

able binding pattern of abovementioned agents. In order

to reduce the computational cost and time, a rigid dock-

ing protocol was considered through rigid receptor and ro-

tatable ligands (13). AutoDockTools 1.5.6 was used to add

the Gasteiger charges, merge non-polar hydrogen atoms,

and define rotatable bonds (24). For blind docking, the

two cytoplasmic domains (containing NBD-1 and NBD-2)

were covered with two separate grid boxes of 126 × 126 ×
126 grid points and 0.375 Å space between the points. The

Lamarckian genetic algorithm was used to explore the best

conformational space of the ligand (24). Accordingly, num-

ber of the runs in each docking experiment was set to 100,

while other parameters were set to default. After collecting

binding free energies of each ligand, the top results were

selected. Then, the interaction between the protein and

the ligands were precisely analyzed using LigPlot software.

3. Results and Discussion

3.1. Structure Prediction and Validation

Generally, a high sequence identity is preferred for

high-quality models, although to establish a membrane
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transporter protein model of adequate quality, more than

30% similarity between the target and template sequences

is required (25-27). Accordingly, blast of hABCC3 sequence

(accession number: O15438) in the PDB database showed

that the crystal structure of bABCC1 (PDB ID: 5UJ9) had

the most query coverage and sequence identity (57%)

among all other proteins (Figure 1). Hence, the 3D struc-

ture of bABCC1 was used as a template for model genera-

tion. The SWISS-MODEL and MODELLER 9.19 programs were

used to build hABCC3 model (supplementary file Appendix

3). Then, the predicted model quality was evaluated by

PROCHECK and ProSA programs. Further evaluation of the

model by PROCHECK demonstrated that 99.3% of residues

were in the allowed regions, showing the acceptable qual-

ity of the constructed model (supplementary file Appendix

4) (Table 1). In addition, Z-score obtained from ProSA tool

was also used to evaluate the model quality. Generally,

ProSA is used to assess the similarity rate between the input

structure and the native proteins with the same size. Here,

the Z-score for hABCC3 model was -12.7, which was within

the acceptable range according to the X-ray and NMR stud-

ies (12) (supplementary file Appendix 5). These values sup-

ported the structural validity of the hABCC3 model.

3.2. Blind Docking Analysis to Predict the Ligand Binding Sites

Blind docking is a reliable and useful approach to

explore the possible ligand binding sites on a protein

(28, 29). In fact, blind docking approach is used in a

variety of docking studies to explore unknown binding

sites on different proteins (7, 30-33). The blind dock-

ing approach was employed in the present study to

dock the acute leukemia chemotherapeutic agents, con-

sidering the undefined ligand binding sites on hABCC3.

These agents included etoposide, methotrexate, doxoru-

bicin, vincristine, mitoxantrone, idarubicin, cytarabine,

daunorubicin, prednisolone and fludarabine, as well as

four hABCC3 inhibitors- i.e., indomethacin, sulfinpyra-

zone, verapamil, and glyburide. The current study em-

ployed two grid volumes covering two cytoplasmic do-

mains of hABCC3 transporter. Then, the abovementioned

ligands were blindly docked and the potent binding ar-

eas were predicted according to the most frequent bind-

ing sites and the highest binding affinities. In other words,

the blind docking approach yielded 100 binding confor-

mations for each ligand. The highest binding affinity of

each compound belonged to a binding site that had the

highest overlap among all ligands. Accordingly, all the

agents examined in the study were bounded to two spe-

cific hotspot areas, located in two cytoplasmic domains

of hABCC3 model; i.e., two ligand binding sites were ex-

ist. Structural analysis revealed that substantial amino

acids involved in the conformation of PBS of cytoplasmic

domain 1 (PBS-1) included Ser752, Gly753, Ser779, Ala780,

Val781, Trp865, Thr866, Leu868, Glu869, Gly870, Ala871,

Glu872, and Asp873, and amino acids involved in the con-

formation of PBS-2 were Leu877, Leu878, Ile879, Gln1371,

Glu1451, Ala1452, Thr1453, Ala1454, Ala1455, Ile1456, Asp1457,

and Leu1458. Moreover, residues such as Ser752, Gly753,

Ser779, Ala780, and Val781 in PBS-1, and Gln1371, Glu1451,

Ala1452, Thr1453, Ala1454, Ala1455, Ile1456, Asp1457, and

Leu1458 in PBS-2 were conserved. These predicted binding

sites were determined using AutoDockTools and Chimera

(Figure 2) and then, the top binding free energy of each lig-

and in these sites was specified.

3.3. Docking Results of Cytoplasmic Domains 1 and 2

Docking energy of AutoDock showed the highest bind-

ing affinity to the PBS-1 in vincristine, followed by dox-

orubicin and daunorubicin. Interestingly, the three drugs

with the highest binding affinities to PBS-2 were similar to

those of PBS-1. In other words, these three drugs had more

favorable interaction energies and higher affinities to both

PBS-1 and PBS-2. The docking results of the ligands along

with their binding energies for PBS-1 and PBS-2 are illus-

trated in Table 2. Residues involved in hydrogen binding

and hydrophobic interactions in the binding modes are

shown in Figures 3 and 4.

In the present study, three drugs with the highest

affinity for hABCC3 were introduced to take a step to-

ward the possible hABCC3 targeting in drug-resistant acute

leukemia. Furthermore, the application of in-silico meth-

ods in targeted cancer therapies, especially leukemia treat-

ment, was highlighted in the current study.
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Table 1. PROCHECK Evaluation of hABCC3 Model

Name Most Favored Region, % Additional Allowed Region, % Generously Allowed Region, % Disallowed Region, %

hABCC3 model 90.3 8.1 0.9 0.7

Figure 1. Alignment between hABCC3 and bABCC1 (RMSD: 0.191), generated using Chimera

Figure 2. Two substrate binding sites in two cytoplasmic domains of the hABCC3 model; A, possible binding site of cytoplasmic domain 1 (PBS-1); B, PBS-2.
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Figure 3. Representations of the binding modes of the three drugs with more favorable interaction energy and stronger affinity to the PBS-1 of hABCC3 model (vincristine,
doxorubicin, and daunorubicin, respectively), showing the ligands (purple), residues involved in hydrogen binding with the ligand (brown) along with their hydrogen bonds
(green), and residues involved in non-bonded interactions (red spikes).

Figure 4. Representations of the binding modes of three drugs with highest binding affinities to the PBS-2 of hABCC3 model (vincristine, doxorubicin, and daunorubicin,
respectively), showing the ligands (purple), residues involved in hydrogen binding with the ligand (brown) along with their hydrogen bonds (green), and residues involved
in non-bonded interactions (red spikes).

Table 2. Docking Analysis of Ligands

Ligand
AutoDock Docking Energy (kcal/mol)

PBS-1 PBS-2

1 Vincristine -10.79 -8.86

2 Doxorubicin -9.26 -8.5

3 Daunorubicin -8.82 -7.77

4 Idarubicin -8.66 -7.1

5 Mitoxantrone -8.47 -7.36

6 Verapamil -8 -6.95

7 Etoposide -6.79 -6.98

8 Methotrexate -6.64 -6.3

9 Glyburide -6.5 -5.67

10 Prednisolone -6.2 -5.23

11 Sulfinpyrazone -5.83 -6.35

12 Fludarabine -3.43 -3.11

13 Cytarabine -3.34 -3.28

14 Indomethacin Not seen -6.03
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