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Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder that results in severe respiratory failure and death.
The main characteristic of IPF is excess oxidative stress, fibroblast activation, increased collagen deposition, and multiple fibrotic
lesions. Zingerone exhibits potent antioxidant, anti-inflammatory, and anti-fibrotic activities.
Objectives: The aim of the study was to evaluate the protective effect of zingerone on bleomycin-induced pulmonary fibrosis (PF)
and underlying mechanisms in rats.
Methods: PF was induced by bleomycin (5 mg/kg, intratracheally) in male Sprague-Dawley rats and then, zingerone (10 - 40 mg/kg,
orally) was administrated for 21 days’ post-bleomycin-instillation. After euthanizing the rats, the biochemical and histopathological
markers of lung tissue were determined.
Results: The findings showed that bleomycin significantly increased inflammatory and fibrotic responses, the level of malondi-
aldehyde (MDA), the influx of inflammatory cells into the bronchoalveolar fluid (BALF), and hydroxyproline content of the lung (P
< 0.01). In addition, the level of glutathione (GSH), the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) de-
creased in the lung of bleomycin-instilled rats (P < 0.01). However, zingerone (20 and 40 mg/kg) significantly decreased histopatho-
logical injuries in H&E (Hematoxylin and eosin) and Masson’s trichrome-stained sections, hydroxyproline content and infiltration
of leukocytes into BALF and oxidative markers, in a dose-dependent manner (P < 0.01). In addition, zingerone (40 mg/kg) signifi-
cantly reduced the level of MDA in bleomycin-instilled rats (P < 0.01).
Conclusions: These findings suggest that zingerone has protective effects against bleomycin-induced PF, which may be due to its
anti-inflammatory and antioxidant activity.
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1. Background

Idiopathic pulmonary fibrosis (IPF) as a fibroprolifer-
ative lung disorder with unknown etiology is character-
ized by significant oxidative injury, massive collagen depo-
sition, lung remodeling, and vigorous fibrotic lesions. The
current treatment strategies cannot effectively ameliorate
IPF. The lung failure is progressed and eventually, death oc-
curs within 3 - 5 years after diagnosis (1).

A powerful and reproducible animal model of IPF is
produced by bleomycin (BLM) as a cytotoxic antibiotic.
The most prevalent mechanism suggested for the patho-
genesis of pulmonary fibrosis (PF) is that bleomycin in-
duces DNA-breakage and oxidative stress leading to apop-
tosis and obliteration of alveolar epithelial cells. These

events lead to the recruitment of leukocytes, overproduc-
tion of free radical species, and abnormal secretion of in-
flammatory and fibrotic mediators (such as IL-1β, TNF-α,
and TGF-β). Then, collagen deposition and lung remod-
eling are progressed by myofibroblast activation (2). The
TGF-β signaling pathway and mitogen-activated protein ki-
nases (MAPKs) signaling are involved in activating myofi-
broblasts (3). However, previous studies have shown that
antioxidant and anti-inflammatory agents have protective
effects against IPF (4).

Zingerone, an active non-volatile ingredient of gin-
ger (Zingiber officinale), has been known as a multi-target
agent, displaying various pharmacological effects. For in-
stance, zingerone exhibits antioxidant activity equal to
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ascorbic acid activity and can attenuate oxidative injuries
in the lung (5), liver (6), and kidney (7). The protec-
tive effects of zingerone against lung injury induced by
lipopolysaccharide (LPS) have been reported by suppress-
ing neutrophil influx and production of proinflammatory
cytokines in mice. The protective effects of zingerone are
attributed to the inhibition of the signaling pathways of
nuclear factor-kappa B (NF-κB) and mitogen-activated pro-
tein kinases (MAPKs) (8). In addition, zingerone reduces in-
flammatory and fibrotic responses in various experimen-
tal animal models of diseases accompanied by the decrease
of TGF-β levels (6, 9, 10).

2. Objectives

Despite evidence of zingerone anti-fibrotic activity in
different animal models, there is no study of its effect
on pulmonary fibrosis. Therefore, the present study was
conducted to evaluate the probable beneficial effects of
zingerone against bleomycin-induced PF and underlying
mechanisms.

3. Methods

3.1. Chemicals

Zingerone and bleomycin sulfate were purchased from
Sigma-Aldrich (St. Louis, MO, USA) and Nippon Kayaku
Co., Ltd., respectively. All other reagents were of analytical
grade. A fresh concentration of drugs was prepared imme-
diately before use.

3.2. Animal

Healthy male Sprague-Dawley rats (200 - 250 g) were
obtained from the animal house and research center of
Jundishapur University of Medical Sciences, Ahvaz, Iran.
They were kept in standard conditions with free access to
water and rodent laboratory chow ad libitum. The exper-
imental design was approved by the Institutional Animal
Ethics Committee of Jundishapur University of Medical Sci-
ences (IR.AJUMS.REC.1395.150) and the experiments were
conducted according to the NIH Guide for Care and Use of
Laboratory Animals.

3.3. Induction of Pulmonary Fibrosis

The PF model was induced in accordance with previous
studies (11). After the rats were anesthetized with intraperi-
toneal injection of ketamine (75 mg/kg) and xylazine (5
mg/kg), bleomycin (5 mg/kg body weight in 0.25 mL saline)
was instilled intratracheally. The vehicle group received
equal amounts of 0.9% saline instead of bleomycin.

3.4. Experimental Design

The optimal dose of bleomycin (5 mg/kg) was obtained
from a preliminary study that led to proper pulmonary fi-
brosis without affecting survival. Thirty-six rats were ran-
domly assigned to the following groups: I (saline + saline),
II (bleomycin (BLM) + vehicle), III (BLM + zingerone 10
mg/kg), IV (BLM + zingerone 20 mg/kg), V (BLM + zingerone
40 mg/kg), VI (saline + zingerone 40 mg/kg). Zingerone
was dissolved in saline and administrated by gavage for
21 consecutive days after intratracheal bleomycin admin-
istration. The route of administration, doses of zingerone,
and the sample size were based on previous studies (8, 12).
The body weight of the rats was evaluated weekly during
the experiment. At the end of the experiments, the rats
were euthanized and the whole lung was dissected out,
washed with saline, and weighed. The lung index was cal-
culated by the ratio of the lung wet weight (mg) to body
weight (g).

3.5. Bronchoalveolar Fluid and Lung Sample Collection

By cannulating the trachea with a blunt needle, the
airways were washed four times with 5mL of phosphate-
buffered saline (PBS). Then, cell suspensions were cen-
trifuged and the cell pellet was suspended by hypotonic ly-
sis using 1% glacial acetic acid. Total leukocytes and differ-
ential cell numbers were counted by using hemocytome-
ter and Wright-Giemsa staining (4). Besides, the left lung
was used for histological examination and right lung tis-
sue was homogenized in cold radioimmune precipitation
assay (RIPA) lysis buffer to make a 10% homogenate (w/v).
After centrifuging at 11180 g for 10 min at 4°C, the super-
natants were maintained at -80°C for subsequent assess-
ment. The total protein content of tissue homogenates was
estimated by the Bradford method.

3.6. Hydroxyproline Measurement

The hydroxyproline content of lung tissue was mea-
sured in accordance with the method described by Ed-
wards and O’Brien (13). The absorbance was read at 550 nm.
The hydroxyproline content was calculated as mg/g lung
tissue.

3.7. Estimation of Malondialdehyde and Glutathione

The malondialdehyde (MDA) content of lung tissue ho-
mogenates was determined in accordance with the TBA
method (14). The reaction of thiobarbituric acid with MDA
at high temperature and low pH leads to the formation of a
red fluorescent complex. The absorbance was determined
at 532 nm. The results were given in nmol/g tissue protein.
The glutathione (GSH) level of lung tissue was measured by
the method previously described by Ellman (15). The values
were expressed as nmol/mg protein.
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3.8. Determination of Superoxide Dismutase and Glutathione
Peroxidase Activities

The glutathione peroxidase (GPx) and superoxide dis-
mutase (SOD) activity was measured using a commercial
RANSOD and RANSEL kits (Randox Labs, Crumlin, UK), ac-
cording to the manufacturer’s instruction. The activities
of GPx and SOD were expressed as IU/mg tissue protein.

3.9. Histopathological Studies

Buffered formaldehyde (10%) was used to fix the left
lung tissue. Then, the tissue specimens were embedded in
paraffin and were cut into 5-µm sections and stained with
H&E (hematoxylin and eosin) and Masson’s trichrome.
A single-blind examination was done by an experienced
pathologist to score fibrosis in accordance with the mod-
ified numerical Ashcroft’s scale (0 - 8) (16).

3.10. Statistical Analysis

The statistical analysis was performed using PRISM ver-
sion 5.01. The scores of fibrosis were analyzed by the
Kruskal-Wallis test and other variables by the Two-way
ANOVA or One-way ANOVA, followed by an appropriate
post hoc test. Data were expressed as means ± SEM. P <
0.05 was considered as statistical significance.

4. Results

4.1. Effect of Zingerone on Body Weight and Lung Index

Bleomycin caused a significant body weight loss in ex-
posed rats compared to the vehicle group at weeks 1, 2, and
3 (P < 0.0001). Zingerone (20 and 40 mg/kg) significantly
increased weight gain compared to the bleomycin group
during the experiments (group effect P < 0.0001, time ef-
fect P = 0.0002, and interaction effect P < 0.0001 in Two-
way ANOVA) (Figure 1A).

Bleomycin significantly increased the normal lung in-
dex on day 21. Zingerone treatment (20 and 40 mg/kg)
significantly decreased the lung index compared to the
bleomycin group (P < 0.0001) (Figure 1B).

4.2. Effect of Zingerone on Bronchoalveolar Fluid Cells

BLM significantly increased the normal total leukocyte
count in BLAF (P < 0.01). Zingerone treatment (20 and 40
mg/kg) significantly reduced the total leukocyte number
(P < 0.01) (Figure 2A). BLM significantly increased the nor-
mal neutrophil and lymphocyte proportions and signifi-
cantly decreased the macrophages proportion (P < 0.01).
Zingerone (20 and 40 mg/kg) significantly reversed the dif-
ferential cell percentage changes in bronchoalveolar fluid
(BALF) as compared to the BLM group (P < 0.01). The total
cell number and differential percentage of leukocytes were
not significantly different between the zingerone-treated
group (10 mg/kg) and the BLM group (Figure 2B-D).

4.3. Effect of Zingerone on Oxidative Markers of Lung Tissue

Bleomycin significantly enhanced the normal lung
MDA level (P < 0.01) and only did zingerone (40 mg/kg)
significantly reduce the MDA group compared to the BLM
group (P < 0.01) (Figure 3A). Bleomycin significantly de-
creased the tissue GSH content and the activity of SOD
and GPx as compared to the vehicle-treated group (P <
0.01). Meanwhile, zingerone (10 - 40 mg/kg) significantly
enhanced the GSH concentration and activity of SOD and
GPx as compared to the BLM-group (P < 0.01) (Figure 3B-D).

4.4. Effect of Zingerone on Histopathological Lesions and Lung
Hydroxyproline

The evaluation of H&E and Masson’s trichrome-stained
sections revealed that the normal lung architecture was
destroyed following bleomycin-instillation and a fibrotic
pattern was observed (Figure 4A and B). BLM significantly
increased the modified Ashcroft’s scale and hydroxypro-
line content (P < 0.01) (Figure 4C and D). Zingerone (10 -
40 mg/kg) dose-dependently decreased the fibrosis score
as compared to the BLM group (P < 0.01). Zingerone (20
and 40 mg/kg) significantly reduced lung hydroxyproline
as compared to the BLM group (P < 0.01), but zingerone (10
mg/kg) had no significant effect on hydroxyproline in BLM-
instilled rats.

5. Discussion

Idiopathic pulmonary fibrosis is a deadly and progres-
sive lung disorder. Despite numerous studies, a few drugs
are available to treat this disorder (17). The bleomycin-
induced animal model of IPF is widely used to investi-
gate new anti-fibrotic compounds (18). Several agents with
potent antioxidant and anti-inflammatory activities ex-
hibit protective effects against bleomycin-induced lung in-
jury (4, 19). Zingerone, as an interesting active ingredi-
ent of ginger (Zingiber officinale), exhibits potent antioxi-
dant, anti-inflammatory, and anti-fibrotic activities in var-
ious animal models of disease (5-8, 20). However, its effect
on pulmonary fibrosis has not been reported. For the first
time in the present study, the possible ameliorative effect
of zingerone against PF induced by bleomycin was deter-
mined in rats.

Our findings showed that zingerone clearly attenuated
fibrotic lesions in the bleomycin group. The body weight
loss, lung index, and total and differential cell numbers of
BLAF, histopathological scores of fibrosis, and lung hydrox-
yproline content were significantly reversed by zingerone
in a dose-dependent manner. In addition, zingerone re-
versed the GPx and SOD activity, as well as GSH and MDA
levels, near to normal values in the vehicle group. In addi-
tion, zingerone solely did not have a significant effect on
the measured variables compared to the vehicle group.
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Figure 1. Effect of zingerone (10 - 40 mg/kg/day, orally) on PF induced by bleomycin (5 mg/kg, intratracheally) on body weight at weeks 1, 2, and 3 A, (Two-way ANOVA followed
by Dunnett’s test); and on lung index B, (One-way ANOVA followed by Tukey’s test) in the rat model of PF. Data are expressed as means ± SEM, (n = 6). ** P < 0.05 compared to
the vehicle group; ## P < 0.05 compared to the BLM group.

Figure 2. Effect of zingerone (10 - 40mg/kg/day, orally) on total cell count (A) percentages of neutrophils (B), lymphocytes (C) and macrophages (D) in BALF in bleomycin (5
mg/kg, intratracheally) rat model of PF. Data are expressed as means± SEM, (n = 6). **P < 0.05 compared to the vehicle group; ##P < 0.05 compared to the BLM group. One-way
ANOVA followed by Tukey’s test.

The level of MDA, a lipid peroxidation by-product, mir-
rors the oxidative cell membrane damage that its level in-
creases in the lung injury by bleomycin (19, 21). The tis-
sue glutathione content and SOD and GPx enzymes as the
most important antioxidant defenses play key roles in pro-
tection against oxidative stress caused by BLM (22, 23). In
agreement with previous studies, our results showed that
bleomycin markedly increased the levels of MDA in lung
tissue. Meanwhile, SOD and GPx activities, as well as the
GSH level, significantly reduced in bleomycin-instilled rats
(24, 25). However, zingerone treatment significantly de-
creased the MDA level and improved the SOD and GPx ac-

tivities, as well as, inhibited GSH depletion. The antioxi-
dant effect of zingerone has been shown in other models of
diseases including hepatic injury (6) and renal damage (7).
Rao et al. showed that the oral administration of zingerone
reduced the MDA content and elevated the SOD and GSH ac-
tivity in gamma-radiated mice (26). Therefore, the amelio-
rative effect of zingerone against pulmonary fibrosis may
be due to its potent antioxidant nature.

The influx of inflammatory cells in BALF as a lung in-
flammatory hallmark is exacerbated in pulmonary fibro-
sis. In addition, the percentage of lymphocytes and neu-
trophils increases while the macrophage proportion de-
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Figure 3. Effect of zingerone (10 - 40 mg/kg/day, orally) on lung tissue levels of MDA (4A), GSH (4B) and activities of SOD (4C) and GPx (4D) in bleomycin (5 mg/kg, intratracheally)
rat model of PF. Data are expressed as means ± SEM, (n = 6). **P < 0.05 compared to the vehicle group; ## P < 0.05 compared to the BLM group. One-way ANOVA followed by
Tukey’s test.

Figure 4. Effect of zingerone (10 - 40 mg/kg) on BLM-induced fibrosis shown in representative images of H&E (A) and Masson’s trichrome-staining (B) (scale bars: 100 µm,
white star: Fibrotic foci) of rat lung sections on day 21. The dose-response of fibrosis changes (Kruskal-Wallis followed by Dunn’s test) (C) and hydroxyproline content (One-way
ANOVA followed by Tukey’s test) (D) in different groups is shown. Data are expressed as means± SEM, (n = 6). **P < 0.05 compared to the vehicle group; ## P < 0.05 compared
to the BLM group.

creases in BALF in BLM groups (27, 28). The activated neu-
trophils and macrophage can produce toxic ROS and pro-
teolytic factors, possibly worsening tissue damage (29).

The same pattern of leukocytes infiltration into BALF was
observed in the present study in bleomycin-instilled rats.
However, zingerone treatment ameliorated these patho-
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logical changes in BALF. In agreement with our results,
Xie et al. reported that zingerone suppressed neutrophil
influx into BALF, alveolar hemorrhage, and pulmonary
edema induced by lipopolysaccharide (8). Overall, our
findings indicated that the protective effect of zingerone
might be due to the attenuation of leukocytes recruitment
into the lung.

The histopathological examination as a gold test is
widely utilized to evaluate the efficiency of new anti-
fibrotic drugs (30). Our findings support previous stud-
ies that bleomycin induces collagen deposition and lung
fibrotic lesions (31). However, zingerone significantly re-
duced lung index and collagen deposition, as well as pul-
monary fibrosis, in BLM-instilled rats. These results are
consistent with other studies indicating that zingerone
could improve inflammation and fibrosis via blocking the
oxidative stress, as well as inhibiting the NF-B and MAPKs
activation, in various animal models such as hepatic and
cardiac fibrosis (6, 10).

Taken together, zingerone exerts a protective effect
against bleomycin-induced PF. Our findings suggested that
zingerone exhibits antioxidant and anti-fibrotic activity
and might be a novel therapeutic agent for the treatment
of IPF. However, more investigations are needed to charac-
terize the anti-fibrotic mechanism of zingerone.
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