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Abstract

Background: It has been proposed that increased levels of pro-inflammatory and pro-fibrotic cytokines play a key role in radiation-
induced lung injury. Interleukin-4 (IL-4) and IL-13 are two pro-fibrotic cytokines that promote the production of free radicals through
stimulation of Duox1 and Duox2. In this experimental study, we aimed to evaluate the expression of IL4Ra1, Duox1, IL13Ra2, and Duox2
genes following rat’s lung irradiation.
Objectives: Also, we detected the modulatory effect of a combination of curcumin and L-selenomethionine on the expression of
these genes.
Methods: Twenty male rats were divided into four groups as G1: control (no treatment or radiation); G2: treatment with a combina-
tion of curcumin and L-selenomethionine; G3: radiation; G4: radiation plus a combination of curcumin and L-selenomethionine.
sixty-seven days after irradiation, rats were killed for detecting the expression of IL4Ra1, IL13Ra2, Duox1, and Duox2.
Results: The results showed no detectable expression for IL13Ra2, while the expression of IL4Ra1, Duox1, and Duox2 was increased.
Treatment with a combination of curcumin and L-selenomethionine could attenuate the expression of these genes.
Conclusions: This study proposes that upregulation of Duox1 and Duox2 may be involved in radiation-induced lung injury. Treat-
ment with a combination of curcumin and L-selenomethionine may be useful for the mitigation of lung injury through modulation
of these genes.
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1. Background

Lung tissue is one of the most sensitive organs to ion-
izing radiation. The main side effects of lung exposure to
radiation include acute inflammation (pneumonitis) and
late fibrosis, which may appear months to years follow-
ing exposure (1). These side effects may pose a threat to
the lives of patients who had undergone radiotherapy for
chest cancer as well as for people who have been exposed
to an accidental nuclear or radiological event (2, 3). In re-
cent years, several studies have been conducted to develop
effective agents for better amelioration of radiation injury

(4-6). Amifostine is an FDA-approved radioprotector for the
management of xerostomia in patients with head and neck
cancer (7). However, its radioprotective effect is limited to
some organs (8). In addition, its high toxicity is the main
limiting factor for clinical applications. Some studies re-
ported termination of the radiotherapy procedure, result-
ing from high toxicity of amifostine (9). In this situation,
amifostine treatment may lead to the reduction of ther-
apeutic outcome due to the repopulation of tumor cells
(10). Hence, for effective alleviation of the complications to
normal tissues, it is necessary to develop low toxic agents
with suitable radioprotective effects (11). It is also impor-
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tant that these agents do not interfere with the eradication
of cancer cells by ionizing radiation (12).

Knowledge of the mechanisms involved in radiation-
induced lung injury can aid the development of new com-
pounds for better radioprotection of injured organs (13,
14). Studies have proposed that mechanisms of radia-
tion injury can be various in different organs. Emerging
evidence from published studies have shown that there
is an important interrelationship between inflammatory
responses and reduction/oxidation (redox) interactions,
which mediate radiation toxicity in several organs (15, 16).
However, signaling pathways for these interactions may be
different. It has been confirmed that an increased level
of both inflammatory and fibrotic cytokines such as IL-
1, IL-2, IL-6, IL-8, IL-4, IL-13, IL-33, TNF-α, TGF-β, and IFN-γ
are involved in the late effects of lung injury by ionizing
radiation (17). On the other hand, it is well-known that
these cytokines, through upregulation of genes involved
in the redox system such as NADPH oxidase, COX-2, iNOS,
lipoxygenases, and mitochondria, stimulate continuous
production of free radicals, including both reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS) (18-
22). So far, studies have confirmed the role of some of these
genes, such as NADPH oxidase 1 (NOX1), NOX4, COX-2, iNOS,
and mitochondria, in radiation lung injury (23). However,
the roles of some others, such as dual oxidases (Duox1 and
Duox2), remain to be elucidated.

With regards to the above-mentioned points, it is im-
portant to target both inflammatory and fibrotic pro-
cesses, as well as oxidative injury, for effective protection
of the lung against ionizing radiation. Curcumin is a
potent modulator of immune responses that can allevi-
ate both inflammation and fibrosis (24). On the other
hand, L-selenomethionine is a potent antioxidant that has
been shown to be more effective for the amelioration of
radiation-induced DNA damage (25).

2. Objectives

In the present study, we aimed to detect the regulation
of IL-4Ra1, Duox2, IL-13Ra2, and Duox1 gene expression fol-
lowing rat’s lung irradiation and treatment with a combi-
nation of curcumin and L-selenomethionine.

3. Methods

3.1. Drug Treatment and Irradiation

Both curcumin and L-selenomethionine were pur-
chased from Sigma Aldrich (USA). L-selenomethionine was
dissolved in distilled water to form a concentration of 0.16
mg per each milliliter. Curcumin was dissolved in 20%

ethanol at a concentration of 30 mg per each milliliter.
Treatment began a day before radiation exposure. L-
selenomethionine was administered through intraperi-
toneal injection (IP) with a dose of 0.8 mg/kg (26). Imme-
diately, curcumin was administered orally in a 150 mg/kg
body weight (27). The protocol was continued for five
consecutive days. Prior to irradiation, the rats were anes-
thetized using a combination of Ketamine and Xylazine for
fixation under the source of gamma rays. Irradiation was
done with 15 Gy from a Cobalt-60 gamma source at a dose
rate of 109 cGy/min in the supine position (PA) in a field
size 6×6 cm. The other field size area was shield using lead
block.

3.2. Experimental Design

This study involved 4 groups of 5 rats in each group,
including G1: control: this group did not receive any ra-
diation or drug treatment, including curcumin and L-
selenomethionine; G2: treatment with curcumin and L-
selenomethionine: this group received both curcumin
and L-selenomethionine at 150 mg/kg and 0.8 mg/kg for
five consecutive days; G3: irradiation: this group only re-
ceived 15 Gy gamma rays to their chest; and G4: irradia-
tion plus curcumin and L-selenomethionine: this group re-
ceived curcumin and L-selenomethionine 24 hours before
irradiation and five consecutive days afterward. On the
day of irradiation, both curcumin and L-selenomethionine
were administered 30 minutes before exposure to radia-
tion. Sixty-seven days after irradiation, all rats were sac-
rificed, and their lung tissues were removed after chest
opening. The Lungs were frozen at -70°C for Real-time PCR.

3.3. Real-time PCR

The lung tissues were homogenized in TRIzol solution
(Takara, Japan), and then total RNA was obtained. Then,
cDNA was synthesized for all samples using a thermocycler
device and a cDNA Synthesis Kit (GeneAll, South Korea). The
primers used in this study were first designed using the
Generunner software, followed by blasting all sequences in
NCBI for confirmation. The sequence of primers is shown
in Table 1. Real-time PCR was done using Applied Biosys-
tems real-time PCR (USA). Moreover, PGM1 was chosen as
the internal control gene or housekeeping.

Real-time PCR was performed in duplicate, and the am-
plifications were done using Master Mix Green (Ampliqon).
Real-Time PCR efficiency for all genes, including Duox1,
Duox2, IL4Ra1, IL13Ra2, and PGM1, was calculated using a
linear regression described by Pfaffl (28).
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Table 1. The Sequences of Primers for Real-time PCR

Gene Forward Sequence Reverse Sequence

IL-13Ra2 TCGTGTTAGCGGATGGGGAT GCCTGGAAGCCTGGATCTCTA

Duox1 AAGAAAGGAAGCATCAACACCC ACCAGGGCAGTCAGGAAGAT

IL-4R1 GAGTGAGTGGAGTCCCAGCATC GCTGAAGTAACAGGTCAGGC

Duox2 AGTCTCATTCCTCACCCGGA GTAACACACACGATGTGGCG

PGM1 CATGATTCTGGGCAAGCACG GCCAGTTGGGGTCTCATACAAA

3.4. Statistical Analysis

In this study, we used SPSS software version 24 for all
statistical analyses. A student t-test was performed to eval-
uate significant differences in gene expression. For all anal-
yses, a P-value < 0.05 was considered statistically signifi-
cant.

4. Results

The results of IL4Ra1 gene expression showed that
when rats’ lung tissues received irradiation by gamma
rays, the expression of this gene increased by 5.94 ± 1.74
fold compared to the control group (P < 0.05). When
rats were treated with a combination of curcumin and L-
selenomethionine, the expression of IL4Ra1 was reduced
by 2.21 ± 0.59 fold compared to the non-treated irradiated
rats significantly (P < 0.05). Treatment with a combination
of curcumin and L-selenomethionine did not cause any
significant change in the expression of IL4Ra1 compared
to the control group (1.48 ± 0.52). Real-time PCR results
showed no detectable expression for IL13Ra2. The expres-
sion of Duox1 when rats received gamma rays to lung tis-
sues was increased by 10.24 ± 2.61 fold compared to the
control group (P < 0.05). When rats received a combina-
tion of curcumin and L-selenomethionine, the expression
of Duox1 was attenuated 4.13 ± 1.07 fold compared to the
rats irradiated without curcumin and L-selenomethionine
treatment (P < 0.05). Administration of a combination of
curcumin and L-selenomethionine alone did not change
the expression of Duox1 (1.02 ± 0.19 fold).

The results of Duox2 gene expression showed a signif-
icant increase in the expression of this gene following ir-
radiation of rat’s lung tissues (11.70 ± 2.47 fold) (P < 0.05).
When rats were treated with a combination of curcumin
and L-selenomethionine before and after the irradiation,
the expression of Duox2 was attenuated significantly (4.37
± 0.54 fold) compared to the rats irradiated without treat-
ment (P < 0.05). Similar to other genes, the expression of
Duox2 did not change in rats treated with a combination of
curcumin and L-selenomethionine alone (1.18 ± 0.32 fold)
(Figure 1).

5. Discussion

Emerging evidence in recent years has confirmed
that the upregulation of some genes, including pro-
inflammatory and pro-fibrotic cytokines, plays a central
role in the development of radiation-induced lung injury
(15). Some studies proposed that modulation of some
pathways, including IL-4 signaling, may help mitigate
radiation-induced injury in the lung and other tissues such
as the heart (29, 30). In addition, supplements with some
antioxidants have confirmed that chronic oxidative dam-
age plays a key role in the late effects of radiation on the
lung (17). Ameziane-El-Hassani et al. (31) showed that IL-
4 and IL-13 could stimulate the upregulation of Duox1 and
Duox2, leading to the continuous production of free radi-
cals following exposure of thyroid cells to radiation. In ad-
dition, they showed that the upregulation of these genes
is associated with genomic instability, which may increase
the risk of carcinogenesis. In this study, we hypothesized
that irradiation of rat’s lung tissues might lead to the up-
regulation of Duox1 and Duox2 gene expression. Also, we
hypothesized that the expression of these genes in the lung
may be dependent on the IL13Ra2 and IL4Ra1 expressions.
Results of our study showed that irradiation of lung tissues
led to a significant increase in the expression of IL4Ra1, but
did not show a detectable expression for IL-13. Also, results
showed an increase in the expression of both Duox1 and
Duox2.

In the present study, we detected the modulatory effect
of curcumin and L-selenomethionine before and after ir-
radiation on the expression of IL4Ra1, Duox1, and Duox2.
The results showed that this combination reduces the ex-
pression of all three genes. This may indicate that the
combination of curcumin and L-selenomethionine may
be useful for the mitigation of radiation-induced lung in-
jury through modulation of pro-oxidant enzymes such
as Duox1 and Duox2. Previous studies have shown that
curcumin can suppress several inflammatory mediators,
including inflammatory cytokines, transcription factors
such as NF-κB and STATs, and also pro-oxidant enzymes
such as iNOS and COX-2 (32-34). On the other hand, L-
selenomethionine has been shown to mitigate radiation-
induced injury in some organs such as the kidney, bone
marrow, and gastrointestinal system (35, 36). The combina-
tion of curcumin and L-selenomethionine may be a potent
anti-inflammation and antioxidant compound for amelio-
ration of radiation injury.

5.1. Conclusions

This study showed that exposing rat’s lung tissues to
a high dose of ionizing radiation leads to upregulation of
IL4ra1, Duox1, and Duox2 gene expression. However, we
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Figure 1. The expression of IL4Ra1, Duox1, and Duox2 following rat’s lung irradiation and administration of a combination of curcumin and L-selenomethionine. A, The
radiation group was compared to the control group; and B, the radiation plus treatment group was compared to the radiation group, *, P < 0.05.

did not detect the regulation of IL13Ra2. Treatment of rats
with a combination of curcumin and L-selenomethionine
could attenuate the expression of these genes. These re-
sults indicate that upregulation of Duox1 and Duox2 may
be involved in the late effect of radiation on the lung tissue.
Eventually, our results indicated that a combination of cur-
cumin and L-selenomethionine may be useful for the miti-
gation of lung injury through modulation of these genes.
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