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Abstract

Background: Most nanoparticles have adverse impacts on the liver, which is a vital body organ, by the induction of oxidative stress.
Objectives: This study was designed to evaluate the hepatoprotective effects of quercetin (QCT) against the toxicity of nanoscale
titanium dioxide (NTiO2) in Wistar rats.
Methods: The present study was conducted on 32 adult female Wistar rats assigned into 4 groups of control, NTiO2 (50 mg/kg),
NTiO2 + Quercetin (50 + 75 mg/kg), and Quercetin (75 mg/kg). The animals exposed to NTiO2 were administered by 50 mg/kg of
NTiO2 for 21 days. The Quercetin + NTiO2 rats received Quercetin before exposing to NTiO2 for 7 days. Alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of serum were considered indicators of the hepatotoxicity.
The oxidative stress was assessed by measuring the activity of catalase (CAT) and superoxide dismutase (SOD) as well as the level of
malondialdehyde (MDA) in the liver. TUNEL assay and histological changes were also assessed.
Results: The NTiO2 significantly elevated the MDA level (P < 0.01), enhanced the serum biomarker levels, reduced the CAT (P < 0.01)
and SOD (P < 0.01) activities. The NTiO2 also aggregated the red blood cells, and caused inflammatory cell infiltration, nuclear pykno-
sis and fat deposit in hepatocytes, as well as induced apoptosis in the liver tissue. Pretreatment with QCT quenched oxidative stress,
attenuated the histological changes, elevated the CAT (P < 0.01) and SOD (P < 0.01) activities, normalized the serum biomarker levels
and decreased apoptosis (P < 0.001).
Conclusions: The QCT has an inhibitory impact on hepatotoxicity induced by nanoparticles in rats.
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1. Background

Nanoparticles (NPs) are often reportedly accumulated
in testis, spleen, liver, kidneys, and brain of rodents (1).
Among the various nanomaterials, special attention has
been paid to Titanium dioxide nanoparticles (NTiO2) due
to their specific applications in cosmetic products, sun-
screen, paints, pharmaceuticals, food colors, kinds of
toothpaste, beverages, and food additives (2). Although the
daily NTiO2 exposure level is not previously determined for
human, the health risk exists for individuals exposed to
high NTiO2 level. The toxicity of NTiO2 has been reported
on different tissues, including testis, liver, and kidney (1).
NTiO2 causes liver damages by reducing antioxidant lev-
els, enhancing oxidative stress, and causing inflammation
(3). Exposures to NPs were found to increase the activities
of intracellular enzymes such as transaminases and alka-
line phosphatase (ALP), indicating loss of cell membrane

integrity of hepatocytes (4).
Nowadays, the treatment of liver injury with synthetic

antioxidants can cultivate tumor formation as well as re-
sult in huge costs because of common hepatic treatments.
From this point of view, the application of natural antiox-
idants has received more attention (5). Quercetin (QCT)
is a plant pigment present in vegetables and fruits. It has
received considerable attention because of its antioxidant
activity against the free radicals in the body and its anti-
inflammatory impact (6, 7). According to the previous
studies, QCT has hepatoprotective impacts against parac-
etamol, lead, ischemia, and reperfusion injury (8-10).

2. Objectives

In this study, the impact of QCT on liver toxicity in-
duced by NTiO2 in rats was examined.
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3. Methods

3.1. Chemicals

All of the compounds used in the study, such as thio-
barbituric acid (TBA), Quercetin, NTiO2, were purchased
from Sigma Chemical Co. (St. Louis, Missouri, USA).

3.2. Animals

The study animals were 32 adult healthy female Wistar
rats with the age range of 8 - 10 weeks and the weight range
of 180 - 200 g. The rats were purchased from the Experi-
mental Research Center at the Ahvaz Jundishapur Univer-
sity of Medical Sciences (AJUMS) in Iran. Our research was
approved by the Ethics Committee of AJUMS, with the code
of ethics of IR.AJUMS.REC.1396.668. They were maintained
in the clean cages with free access to pellet food and tap wa-
ter at 12 hours of dark and 12 hours of light conditions with
humidity of 50 ± 5% at a temperature of 22 ± 3°C.

3.3. Experimental Design

The rats were assigned into four groups with eight
members:

• Control: the administration of only saline for 21 days.

• QCT: the administration of 75 mg/kg QCT for 21 days
(8).

• NTiO2: the administration of oral 50 mg/kg of NTiO2

initiated on the 7th day after daily administration of 0.2 mL
saline and was continued until the study was terminated
on day 21.

• QCT + NTiO2: the administration of oral 50 mg/kg of
NTiO2 was initiated in the 7th day after daily administra-
tion of QCT and continued until the end of the 21st day.

The data from earlier investigations and pilot study
were used to determine the doses of NTiO2 and QCT (8,
10). The feeding method was gavage. According to a pro-
tocol proposed by Shakeel et al. (9), the NTiO2 (Sigma-
Aldrich) stock solution was made in Milli-Q water. An
atomic force microscope was employed to explore the mor-
phology and to calculate the particle size of the synthe-
sized NTiO2. Based on the findings illustrated in Figure
1, the NPs had a spherical shape with a uniform particle
size of < 100 nm on average. After the last administration,
blood samples were collected from the jugular vein under
deep anesthesia with ketamine/xylazine (60/6 mg/kg, i.p.).
The animals were then killed and their livers dissected, and
mall pieces of the hepatic tissue were stored in -80 °C for
assessment of the MDA, CAT, and SOD. Other pieces were
stored in 10% formalin. The other pieces were homoge-
nized (1/10 w/v) in ice-cold Tris-HCl buffer (0.1 M, pH 7.4).

3.4. Biochemical Tests

The collected blood samples were centrifuged to mea-
sure the serum alanine aminotransferase (ALT), aspartate
aminotransferase (AST) and alkaline phosphatase (ALP) us-
ing commercially available kits (Pars Azmon, Iran).

3.5. Lipid Peroxidation Assay

After centrifugation of taken liver tissues, 500µL of the
supernatant was transferred into 1.5 mL of 2-thiobarbituric
acid 10% (TBA). The resulting mixture was then centrifuged
for 15 minutes at 7500 × g to obtain the supernatant, 2
mL of which was added by 2 mL of TBA 0.68%, boiled,
and cooled down. Each sample was added by 2 mL of n-
butanol and centrifuged for 15 minutes at 7500 × g. The
absorbance, or optical density (OD), was read for the super-
natants using a spectrophotometer at a wavelength of 535
nm (11). Protein content in homogenates was measured as
previously described by Bradford assay (12).

3.6. The Activity of SOD Enzyme

The SOD activity was determined using a Ransod kit
(SD125; Randox Labs, UK). In this way, an aqueous-soluble
formazan dye upon reduction with the superoxide anion is
generated. The protein amount in homogenates was mea-
sured by Bradford method. The rate of the reduction is re-
lated to the xanthine oxidase activity, which is prevented
by SOD. The inhibition activity of SOD was measured by a
spectrophotometer at 505 nm (11).

3.7. The Activity of CAT Enzyme

A method of (13) was used to measure the activity of CAT
enzyme. Protein content in homogenates was determined
as previously described. Thus the sample containing CAT
catalyzes the conversion of hydrogen peroxide (H2O2) to
H2O and O2. The OD of unconverted H2O2 is obtained at a
wavelength of 570 nm (12).

3.8. Histological Examinations

Six tissue cross-sections were considered for each ani-
mal. The sections were stained by hematoxylin and eosin
(H&E) staining, followed by histological examinations in
terms of inflammatory cell infiltration, nuclear pyknosis,
vacuolization of hepatocytes (fat deposit), and accumula-
tion of red blood cells (RBCs). The leukocyte infiltration
and the erythrocyte accumulation were examined in the
four groups, grading 0 as normal, 1 as weak, 2 as moderate,
and 3 as intense. The average percentage of nuclear pykno-
sis or vocalized hepatocytes were also determined.
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Figure 1. AFM image of NTiO2 . Spherical morphology and particle size homogeneous distribution are observed.

3.9. TUNEL Assay

TUNEL assay was performed by using In Situ Detection
Cell Death kit (Roche, 11684795910). After deparaffinization
of the tissue sections, the 30-minute incubation was per-
formed in the presence of proteinase K at a temperature of
26°C, and then exposed to the reaction mixture of TUNEL
assay inside a humidity chamber at temperature of 37°C
for 1 hour. The tissue cross-sections were incubated with
Anti-Fluorescein-AP at a temperature of 37°C for 30 min-
utes, rinsed by deionized water, and exposed by DAB for 5
minutes. The TUNEL-positive cells were those possessing a
homogeneous dark brown nucleus.

3.10. Statistical Analysis

The analysis of the collected data reported as mean ±
SEM was performed using GraphPad Prism (version 5.04)

using one-way ANOVA test and Tukey’s post hoc analysis at
statistically significance level of P < 0.05.

4. Results

4.1. Biochemical Tests

Serum levels of ALP, ALT, and AST were slightly reduced
in QCT-treated animals compared to the control group. The
serum concentrations of all biomarkers were markedly en-
hanced in NTiO2 group (P < 0.01). The rats treated with
QCT + NTiO2 showed a marked reduction in the level of
biochemical parameters compared to those treated with
NTiO2 alone (P < 0.01) (Figure 2).
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Figure 2. Biochemical tests of the control and experimental groups. Values were
expressed as mean± SD for 8 rats. * P <0.05, ** P <0.001, # P <0.05, ## P <0.01; * and
# symbols indicate the comparison of the control and NTiO2 -intoxicated groups,
respectively.

4.2. The Activity of SOD and CAT Enzymes andMDA Level

NTiO2 caused a significant elevation in MDA level of the
liver tissue in comparison to the control. The elevation of
MDA was ameliorated by QCT (P < 0.01). The NTiO2 signif-
icantly decreased the activities of SOD and CAT enzymes
compared with the control group (P < 0.01). The SOD and
CAT activity was increased significantly following the QCT
pretreatment compared with the NTiO2 group (P < 0.05).
Figure 3 illustrates the NTiO2 and QCT effects on MDA, SOD,
and CAT.

4.3. Histological Changes

Normal liver structures were observed in the control
and QCT groups. In NTiO2-intoxicated rats, congestion
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Figure 3. MDA level, and SOD and CAT activities of the control and experimental
groups. Values are expressed as mean± SD for 8 rats. * P <0.05, ** P <0.01, # P <0.05,
## P <0.01; * and # symbols indicate the comparison of the control and NTiO2 -
intoxicated groups, respectively.

of RBCs, inflammatory cell infiltration, nuclear pyknosis,
and hepatocytes vacuolization (fat deposit) were observed.
These histological changes were markedly reduced by QCT
pretreatment (Table 1 and Figure 4).

4.4. TUNEL Staining

As shown in Figure 5, TUNEL-positive staining was seen
in a few hepatocytes in the QCT and control groups. In
the group exposed to NTiO2, there was a significant eleva-
tion in the TUNEL-positive cells (P < 0.001). In the QCT +
NTiO2 group, the index of apoptosis was markedly reduced
in comparison to the NTiO2 group (P < 0.001).
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Figure 4. Light microscopy of H&E stained sections of liver from the control and experimental groups. A, control group; B, QCT group; C, NTiO2 -intoxicated group; D, QCT +
NTiO2 group. C, congestion of RBCs; F, fat deposit; I, infiltration of inflammatory cells; NP, nuclear pyknosis. Magnifications: × 250.

Table 1. Histological Findings of the Control and Experimental Groups (N = 8)a , b

Groups Congestion of RBC Infiltration of Inflammatory Cells Nuclear Pyknosis (%) Fat Deposit (%)

Control 0.07 ± 0.02 0.05 ± 0.00 0.01 ± 0.00 0.03 ± 0.00

QCT 0.06 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

NTiO2 2.12 ± 0.43** 1.33 ± 0.24** 26.3 ± 3.65** 18.9 ± 3.20**

QCT + NTiO2 0.56 ± 0.16*## 0.43 ± 0.15*# 12.45 ± 2.21**# 4.57 ± 1.52**##

aValues are expressed as mean ± SD.
b*P < 0.01, **P < 0.001, #P < 0.05, ##P < 0.01; * and # symbols indicate the comparison of the control and NTiO2 groups, respectively.

5. Discussion

According to the results of our research, the NTiO2-
induced liver damage was prevented by QCT in rats. NTiO2

markedly enhanced the levels of ALT, AST, and ALP. Increas-
ing the level of ALT and AST is the main indices, reflecting
hepatocytes damage because of these enzymes released

from hepatocytes into the bloodstream after liver toxic-
ity. The level of ALP reflects the functional efficiency of the
liver, and is dramatically enhanced in response to any dis-
ease of the liver (13). The reversal of these enzymes levels
by QCT indicates that QCT can stabilize hepatocyte mem-
brane, and hence block the leakage of biomarkers into the
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Figure 5. TUNEL-positive cells in the liver sections (magnifications: × 250) and apoptotic index. A, control group; B, QCT group; C, NTiO2 -intoxicated group; D, QCT + NTiO2

group. Arrows indicate TUNEL-positive cells. Values are expressed as mean ± SD for 8 rats. * P < 0.05, ** P < 0.01, # P < 0.05, ## P < 0.01; * and # symbols indicate the
comparison of the control and NTiO2 -intoxicated groups, respectively.

circulation. Bona et al. showed that a marked increase
in serum levels of AST and ALT was reversed with QCT af-
ter inhalation of chloroform in rats (14). According to the
results, NTiO2 markedly destructed the lobular structure,
increased fat deposit in hepatocytes, elevated congestion
of RBCs, enhanced leukocytes infiltration, and increased
nuclear pyknosis percentage in liver tissue. These find-
ings were in line with other studies showing the histo-
logical changes induced by NTiO2. Ma et al. showed that

NTiO2 induced histological alterations, including vascel-
lum congestion, fatty change, and apoptosis in the liver tis-
sue (15). In this study, QCT improved the lobular structure,
decreased fat deposit in hepatocytes, reduced congestion
of RBCs, and suppressed inflammatory cell infiltration.
The improved structural changes of the liver with pretreat-
ment of QCT was accompanied by reducing biomarker lev-
els. QCT effectively ameliorated lead-induced structural
changes and infiltration of leukocyte in rat liver (7). In this
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study, the NTiO2 significantly elevated the MDA content in
the liver tissue, while SOD and CAT levels were markedly re-
duced. Previous studies demonstrate that NTiO2 induces
oxidative stress and lipid peroxidation in the liver of ro-
dents. Shukla et al. showed that NTiO2 caused apoptosis
and DNA toxicity in hepatocytes (16). The role of oxidative
stress in the liver toxicity induced by NPs was reported by
Liang et al. (17). One of the markers for the intensified per-
oxidation process is the MDA content (18). The QCT atten-
uated the NTiO2-induced increase in the hepatic MDA con-
tent. Boadi et al. demonstrated that QCT reduced lipid per-
oxidation (19). Gnoni et al. also showed that QCT prevented
the generation of triacylglycerol and fatty acid in hepato-
cytes of rats (20). As mentioned above histological analy-
sis of our study also showed that QCT effectively reduced
the fat deposit of hepatocytes. The markedly reduced in
SOD and CAT levels point out the liver injury in the rats ex-
posed to the NTiO2. While, pretreatment with QCT caused
a marked increase in the level of these enzymes, which
revealed the antioxidant property of the QCT. Gonzalez-
Esquivel et al. showed that QCT altered the hepatic levels
of MDA, antioxidant enzyme activities in male rats exposed
to NTiO2 (21). In a study by Liu et al. in 2013, the ROS gener-
ation was suppressed by the QCT, followed by an increase
in the total antioxidant capacity in the liver of rats (22). El-
Faras et al. demonstrated that the antioxidative property
of QCT played an important role in its hepatoprotective im-
pacts on paracetamol-induced liver toxicity (8). Ma et al.
demonstrated that the prevention of CCl4-induced inflam-
mation by QCT was due to its antioxidant property (23). The
marked decrease in structural changes of the liver and the
biomarker levels with pretreatment of QCT was accompa-
nied by significant reducing in oxidative stress.

Oxidative stress triggers various intracellular events
such as apoptosis (24). As shown in the results, NTiO2

significantly increased the apoptotic index in the hepa-
tocytes. Wang et al. reported that NTiO2 induced DNA
damage, and apoptosis in human lung cancer A549 cells
(25). Park et al. also reported NTiO2 induced apoptosis
and oxidative stress in a bronchial epithelial cell line (26).
NTiO2 induced apoptosis in mouse epidermal (JB6) and hu-
man bronchial epithelial (BEAS-2B) cell lines (27). Alarifi
et al. have also demonstrated apoptotic effects of NTiO2

in the liver of rats (28). In the present study, QCT inten-
sively decreased the apoptotic index in the liver of rats ex-
posed to NTiO2. Ansar et al. showed that QCT protected
the liver against DNA damage induced by acrylamide (29).
The QCT inhibits apoptosis in alcohol-induced liver toxic-
ity (30), prevents apoptosis in hepatocytes of diabetic rats
(31), and suppresses the apoptosis in mesangial cells of kid-
ney exposed to H2O2 (32). Anti-apoptotic impacts of QCT
against traumatic brain injury were also reported by Yang

et al. (33). According to the results, the decrease in apopto-
sis by pretreatment of QCT was accompanied by reducing
biomarker levels and oxidative stress in the liver.

5.1. Conclusions

In summary, the present study suggests that QCT sup-
presses liver toxicity induced by NTiO2 in rats. These results
suggest that QCT may have potential clinical applications
for treating hepatotoxicity induced by metal NPs.
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