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Abstract

Context: Patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD) are more likely to suffer from cognitive
dysfunction due to dementia. Transcranial direct current stimulation (tDCS) as a non-invasive treatment strategy has been used
as an efficient strategy to improve cognitive function.
Evidence Acquisition: Several studies investigating tDCS over the dorsolateral prefrontal cortex (dlPFC) were reviewed.
Results: Most of these studies have targeted the left dlPFC, indicating that tDCS over the dlPFC can improve cognitive function,
such as memory, visual recognition, attention, decision-making, and cognitive decline. However, there are still many unanswered
questions about the effect of tDCS over the dlPFC on the connectivity of this brain region as a key node for cognitive function.
Meanwhile, further research should be conducted to elucidate the effects of tDCS over the dlPFC on brain connectivity and AD
biomarkers. In addition, more investigations should be conducted to identify the exact mechanisms affecting dlPFC stimulation
on cognitive dysfunction in AD patients.
Conclusions: Based on the results, tDCS over the DlPFC could improve cognitive function in AD patients.
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1. Context

Alzheimer’s disease (AD) is a progressive
neurodegenerative disease, which leads to brain
dysfunction, poor performance in memory, executive
function, visuospatial abilities, language, planning, and
abstract reasoning (1). According to estimates, 4% of
people under 65 suffer from Alzheimer’s. Cognitive
decline is the most critical problem in AD, and the
dorsolateral prefrontal cortex (dlPFC) plays an essential
role in cognitive function (2). Therefore, this area has been
targeted in many studies to assess cognitive dysfunction
in AD, which is discussed here. This review provided a
literature overview on the effects of tDCS over the dlPFC on

cognitive dysfunction induced by AD.

2. Evidence Acquisition

As mentioned, this paper reviews the effects of tDCS
over the dlPFC on cognitive function in AD patients based
on a non-systematic approach. The articles were searched
in the Scopus-, Google Scholar-, and PubMed-based
literature review that targeted AD using tDCS over the
dlPFC and conducted before Sep 2021. The keywords
included “Alzheimer’s disease” AND “Transcranial Direct
Stimulation (tDCS),” “Cognitive Dysfunction” AND “tDCS,”
“Dorsolateral Prefrontal Cortex (dlPFC),” AND “tDCS.”
The data collection process focused primarily on brain
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stimulation methods, patient characteristics, presence
and/or absence of cognitive symptoms, study design and
experimental protocols, and quantification of stimulation
parameters. Studies conducted using healthy subjects and
animal models were excluded from this study.

2.1. Pathophysiology of AD

Previous studies have suggested several
mechanisms underlying AD pathophysiology and
AD-induced cognitive decline, including cholinergic
deficits, formation/accumulation of neurotoxic
substances, oxidative stress, neuroinflammation, and
mitochondrial dysfunction (3). Amyloid beta (Aβ)
accumulation, particularly soluble neurotoxic oligomers,
affects tau hyperphosphorylation, oxidative stress,
neuroinflammation, and mitochondrial dysfunction,
progressing disease through their downstream molecular
cascades. Neurofibrillary tangles (NFTs) form intracellular
aggregations that slowly propagate in the hippocampal
region, known as the golden hallmark of AD (4, 5).
Even though these findings may explain the probable
foundations of cognitive impairment in AD, the precise
mechanisms behind the loss of synapses and neurons in
AD remain to be elucidated.

2.2. Pharmacological and Non-pharmacological Treatments

Available pharmacological treatments for AD are
currently ineffective, causing side effects such as nausea,
diarrhea, vomiting, dizziness, and agitation (Table 1)
(6). Considering such limitations of pharmacological
treatments, most researchers may prefer recently
developed non-pharmacological interventions such as
brain stimulation.

2.3. Brain Stimulation

Brain stimulation modulates neuronal activity in
specific brain regions or networks using an electronic
or electromagnetic field. Invasive and noninvasive
approaches are generally divided into two categories.
There are two types of invasive brain stimulation:
VNS and DBS. VNS can stimulate the vagus nerve
using a programmable neurostimulator implanted
subcutaneously in the chest or near the ear (7, 8). DBS
involves implanted electrodes in the brain powered
by a pulse generator placed subcutaneously in the
chest (9). TMS and tDCS are two common forms of
noninvasive brain stimulation. tDCS is a noninvasive
approach that delivers weak electrical currents into the
brain through saline-soaked sponge electrodes (10). TMS
involves delivering magnetic currents via a coil of wire

that generates an electric current in the targeted brain
regions based on Faraday’s law (11).

These methods have some side effects which limit
their application (see advantages and disadvantages in
Figure 1). Among these methods, tDCS has the fewest side
effects because it only induces mild effects like redness
and itching of the skin (12). In addition, tDCS has
several advantages over rTMS, such as being less invasive
and expensive, easier to manage, more controllable, and
portable, leading individuals to consider it as a suitable
treatment at home in the future (13). Few studies have
investigated the effects of tDCS on cognitive function in AD
patients, given the efficiency of tDCS on various cognitive
processes in healthy individuals as well as psychiatric and
neurological patients, as mentioned above.

2.4. The dlPFC and Cognitive Function

The dlPFC is located in the middle frontal gyrus,
typically defined as Brodmann areas 46 (BA 46) and 9 (BA 9)
(14). This area is extensively connected to various cortical
and subcortical regions involved in cognitive function,
particularly in executive control and memory processing
(15). More precisely, the dlPFC is involved in either working
memory (16, 17), attentional bias (18), decision-making (19),
language comprehension (20) and production (21), and
cognitive control (22). Furthermore, some critical role is
known for dlPFC, such as attention (23), problem-solving
(24), working memory (25), and risky decision-making
(26).

2.5. Effects of tDCS on Memory in AD Patients

Several studies have focused on the dlPFC due to its
extensive connections to various cortical and subcortical
regions involved in numerous cognitive functions (15).
Numerous studies have evaluated the effects of tDCS over
the left dlPFC on memory in AD patients. A single tDCS
session has been shown to improve recognition memory
(27), whereas multiple tDCS sessions in AD patients have
improved global cognition (28). In contrast, Suemoto et al.
demonstrated that repeated anodal tDCS applied over the
dlPFC did not affect global cognitive performance (29).

The effect of tDCS over the dlPFC and recognition
memory in AD improved visual recognition memory,
but the Stroop digit span test showed no significant
differences between the active and sham groups (27).
Cotelli et al. (30) showed that anodal tDCS (AtDCS) plus
computer-assisted training (CT) improved memory for
naming faces in AD. This study showed that both (AtDCS
+ CT) and (PtDCS + CT) improved performance compared
to the AtDCS + motor training group after two weeks of
memory training (30). All patients received tDCS over the
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Table 1. Common and Rare Side Effects of Pharmacological Treatment of Alzheimer’s Disease

Drugs Side Effects

Donepezil Insomnia, diarrhea, dizziness, fatigue, dizziness, rhinitis, anxiety, sleep disturbances, rare seizures

Galantamine Convulsions, anorexia, dizziness, tremor, confusion, depression, rare seizures, and rare syncope

Rivastigmine Dizziness, fatigue, headache, rare severe vomiting with esophageal rupture, rare syncope

Memantine Dizziness, headache, constipation, rare seizures

Tacrine Dizziness, diarrhea, dyspepsia, myalgia, anorexia, seizures, dizziness, insomnia, hepatotoxicity

Figure 1. Classification of brain stimulation approaches. Blue represents the advantages, and pink presents the disadvantages of different types of brain stimulation.

left dlPFC (five sessions of 25 min/day, at a constant current
of 2 mA) for two weeks (30). A case study has examined the
effect of 10 continuous daily sessions of tDCS over the left
dlPFC and showed the stability of global cognition in mild
AD subjects that lasted for three months (31). However,
long-term treatment with tDCS over the dlPFC needs to be
investigated. For example, a case study reported that daily
tDCS stimulation over the temporal lobe for eight months
improved memory and slowed cognitive decline in a
patient with early-onset AD (32). Moreover, a recent study
reported that applying tDCS at home could effectively
improve cognitive decline accompanied by AD (33).

In the early stages of AD, patients suffer from dlPFC
dysfunction (34), leading to WM impairment and

especially its executive component (35). In addition,
plasticity impairment in the dlPFC of AD patients should
be considered an important index to improve WM deficits
(36). Moreover, two trials have investigated noninvasive
stimulation’s effect on improving WM in AD patients using
tDCS in only one case (27, 31). Boggio et al. (27) applied tDCS
over the left temporal and dlPFC to assess WM by a forward
and backward digit span test and found no significant
differences between sham and active stimulation (27),
which may be due to the low sensitivity of the digit span
test to the effects of tDCS (27). The electroencephalography
(EEG) and event-related potentials used in another study
have been found to improve the low sensitivity of previous
tests using intelligent methods (37).
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As discussed above, the effects of tDCS on memory
have been explored in various studies, but the exact
involved mechanisms are not yet clear. Alterations in
multiple neurotransmitter systems may be one of the
important mechanisms for the beneficial effects of tDCS
(38). In addition, tDCS-induced modulation of neuronal
excitability may, in part, account for some other beneficial
effects of this technique in AD patients. For example,
the temporal-parietal area in AD patients is hypoactive,
and tDCS increases cortical activity (39). Cathodal tDCS
may decrease hyperexcitability in the frontal region
of AD patients (40). Despite these previous studies,
the optimal stimulation protocol remains unknown,
including current intensity, duration, session, and
long-term period. Therefore, for future studies, the exact
mechanisms involved in the effects of tDCS on memory,
e.g., its probable effects on Ca2+ levels, brain-derived
neurotrophic factor (BDNF), acetylcholine, dopamine, and
other neurotransmitters, play important roles in neural
plasticity.

2.6. The Effects of tDCS on Attention

Evidence shows that demanding executive processes
of selective and divided attention may be impaired in the
early stages of AD (35). AD is associated with deficits in
span, focus, selective attention, and divided attention (41).
As an important region in the attentional network, the
PFC has been targeted in various tDCS studies. Boggio et
al. (27) revealed that tDCS application over the left dlPFC
in AD patients did not affect their attention in the Stroop
task. In a literature survey, Siever (42) concluded that a
large anodal electrode in FP1 or FP2 and a contralateral
shoulder cathode might improve attention. Another
protocol involves a large anodal electrode in FP1 or FP2 with
a cathode in the neck. In stroke patients, experiments to
strengthen attention have been performed using a similar
protocol with an anodal electrode over the left dlPFC and a
cathodal electrode in the contralateral supraorbital region
(43). The effectiveness of tDCS over the dlPFC in AD patients
has only been studied in a few studies, but data from
other dementias suggest that stimulation can enhance
attention. The main drawback of this approach includes
using a bipolar montage (two electrodes were placed on
the scalp) and the current distributions related to the size
of the anodal and cathodal electrodes and the position
of the reference electrode (10). However, the long-lasting
effects of tDCS are poorly understood and need further
investigation.

2.7. The tDCS and Decision Making

In AD patients, risky decision-making is associated
with impairments in WM, mental flexibility, numerical

ability, and inhibition, whereas impairments in learning
ability, memory, and emotional processing occur in
ambiguity (44). A literature survey revealed that a few
studies have so far examined the effect of tDCS on the
dlPFC on decision-making in AD patients (45, 46). Based
on this study, the ability to decide in risky situations may
be impaired, but ambiguity may not be damaged in AD
patients (45). Thams et al. (46) evaluated the effects of
the dlPFC on decision-making, combining three weeks of
cognitive training (before and after brain stimulation) via
tDCS (1 mA for 20 min). In this study, the immediate and
long-term effects of tDCS (1 and 7 months after training)
improved decision-making in AD patients (46). Overall,
these studies have highlighted the need to assess other
effects of tDCS over the dlPFC on decision-making in
AD patients and determine the improvement of this
noninvasive brain stimulation regarding the cognitive
function component in AD patients. According to
physiological theory, neurophysiological changes could
be responsible for the altered decision-making in AD (47).
Evidence reveals that alterations in various brain regions,
including the frontal, parietal, and temporal cortices,
and also changes in the neurotransmitters dopamine,
serotonin, norepinephrine (48), and glutamate (49), could
lead to altered decision-making in AD patients (47). More
investigations are needed to examine the effects of tDCS
on neurotransmitters and decision-making in AD patients.

3. Discussion

Alzheimer’s disease is a complex neurodegenerative
disorder, representing one of modern society’s major
problems. Research efforts to understand the underlying
mechanisms of AD and develop treatment strategies have
failed. Therefore, the efforts to elucidate the mechanism of
the disease and find new methods continue with vigor.

This paper reviewed tDCS as a painless method to
affect AD. This technique applies a weak electric current
across the scalp whose distribution into cortical networks
depends on various factors, including current density,
stimulation duration, size and mounting of electrodes,
and electric field orientation relative to the anatomical
and geometric features. There are several possible
explanations for these important issues. For instance,
most studies above used a two-mA current intensity
during a 10-session stimulation episode, but its duration
varied from 20 to 30 min. Second, different electrode
surfaces could be used in various cognitive functional
networks, and a high-density tDCS (HD-tDCS) protocol
may decrease this disturbance. Finally, duration and
times of stimulations may be other determinant factors.
Some previous studies have used daily stimulations, while
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others have applied 10 or 6 sessions during two weeks.
Previous reports examined different protocols, and further
efforts are required to ensure optimal protocols for tDCS
application.

Most studies on the cognitive functions of tDCS in AD
patients have primarily addressed multiple stimulations
on the dlPFC, while a few have used single stimulations
(50). tDCS may, in part, affect AD via inducing neural
plasticity, especially LTP, in various brain regions. Most
previous studies have followed up on the patients for six
months. Since AD is a progressive disorder, further studies
with longer durations of follow-up are recommended
to assess the long-lasting effects of tDCS. The sufficient
sample size in different cognitive domains, appropriate
stimulation protocols (e.g., intensity, duration, and the
number of repeated stimulations), cognitive tests with
high sensitivity, and long-term follow-up would seem to
be important issues in need of further investigations to
evaluate the tDCS as a potential complementary treatment
for AD.

AD is an irreversible, progressive neurodegenerative
disease that begins decades before the onset of clinical
symptoms (51). Previous studies have shown that changes
in synaptic function, loss of synapses, and dystrophic
axons are characteristic features in neurodegenerative
diseases. Further studies have shown that Aβ and tau
levels gradually increase. In contrast, symptomatic
cognitive impairment occurs with a delay of 10 - 20 years
between the onset of accumulation and a decrease in Aβ
accumulation synchronous with the start of symptomatic
disease (52). Knopman et al. (53) reported in a literature
review that the Aβ and tau neurotoxicity leads to synaptic
changes and synapse loss. In addition, studies have
revealed a strong relationship between synaptic loss
and cognitive decline (54). Moreover, evidence indicates
that neuroinflammation occurs years before the onset
of cognitive decline in AD (55). The anti-inflammatory
effect of NA in the brain is well established (56), and the
structure and functions of the NA system have also been
shown to be disrupted at the early stages of AD. In animal
models of AD, toxin-induced LC neurodegeneration
could lead to increased accumulation of Aβ-plaques and
neuroinflammation in the brain and alters the expression
of NE receptors (57) as an early causal factor for AD.

Moreover, monoaminergic systems are involved in
various physiological functions, including regulating
movement, cognitive processes, mood, affective states,
attention, and sleep. Monoaminergic systems also
affect the degeneration of neurons within subcortical
monoaminergic systems as an important early hallmark
of AD before the deposition of extracellular β-amyloid
plaques and intracellular NFT in the cortex (58). Evidence

may also demonstrate that the initial degeneration
of deep-seated monoaminergic nuclei may trigger
the transneuronal spread of AD pathology toward the
hippocampus and cortex, affecting learning and memory
function (8, 59). The findings suggest exploring novel
markers for therapeutic methods such as tDCS may be
more effective before neuronal and synaptic dysfunction
occurs.

4. Conclusions

Based on the results, tDCS can be an effective
complementary therapy for AD-induced cognitive decline.
The exact mechanisms involved in the beneficial effects
of tDCS are not yet clear, but the probable mechanisms
may include various neurophysiological signs and the
underlying basis of AD, including reducing Aβ plaques
and tau proteins, improving LTP and neural plasticity,
and alterations of the abnormal neurotransmitter
systems. Further studies should also consider important
parameters, such as intensity, duration, and number
of stimulations, in addition to the exact mechanisms.
Furthermore, an important gap in previous findings is
the lack of identifying biomarkers before neuronal and
synaptic loss. Further studies are needed to develop a
complete picture of the treatment strategy for AD and
determine the above factors.
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