
J Kermanshah Univ Med Sci. 2025 June; 29(2): e141551 https://doi.org/10.5812/jkums-141551

Published Online: 2023 August 15 Research Article

Copyright © 2025, Journal of Kermanshah University of Medical Sciences. This open-access article is available under the Creative Commons Attribution-

NonCommercial 4.0 (CC BY-NC 4.0) International License (https://creativecommons.org/licenses/by-nc/4.0/), which allows for the copying and redistribution

of the material only for noncommercial purposes, provided that the original work is properly cited.

How to Cite: Abdolmaleki A, Rashidi I, Jalili C, Ghanbari A, Zeinivand M, et al. Therapeutic Effects of Taraxasterol on Triple-Negative Breast Cancer (MDA-MB-

231 Cells) Through Modulation of the Novel AKT/mTOR/β-Catenin Signaling Pathway. J Kermanshah Univ Med Sci. 2025; 29 (2): e141551.

https://doi.org/10.5812/jkums-141551.

Therapeutic Effects of Taraxasterol on Triple-Negative Breast Cancer

(MDA-MB-231 Cells) Through Modulation of the Novel AKT/mTOR/β-

Catenin Signaling Pathway

Amir Abdolmaleki 1 , Iraj Rashidi 2 , Cyrus Jalili 2 , Ali Ghanbari 2 , Motahareh Zeinivand 3 , Hadis

Nouri 4 , Fuzieh Khani-Hemmatabadi 2 , *

1 Department of Operating Room, Nahavand Shool of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
2 Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
3
 Department of Physiology, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran

4 Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran

*Corresponding Author: Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran. Email:
fuziekhani@yahoo.com

Received: 10 October, 2023; Revised: 23 June, 2025; Accepted: 26 June, 2025

Abstract

Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) with high resistance to chemotherapy.

Taraxasterol is isolated from Taraxacum officinale (TO) with anti-cancer effects.

Objectives: The present study aimed to investigate the anticancer effect of taraxasterol on TNBC cells.

Methods: Taraxacum officinale extract was prepared and purified with concentrations ranging from 1 to 128 μM. MDA-MB-231

cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) and treated with TO for 24 to 96

hours. Cell viability was assessed using the MTT assay, and apoptosis was evaluated by the diphenylamine method. Gene

expression of HPRT, OPN, AKT1, mTOR, PTEN, and β-Catenin was measured by real-time PCR using the 2-ΔΔCt method on the

StepOne system. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test in SPSS, with

significance set at P < 0.05.

Results: After 24, 48, 72, and 96 h of treatment with taraxasterol, cell viability was decreased (P < 0.05). The IC50 values were

respectively found 439.37 ± 6.8, 213.27 ± 5.78, 121 ± 7.98 and 27.86 ± 9.66 μM following 24, 48, 72, and 96 h of taraxasterol exposure.

Diphenylamine assay showed that IC50 concentration of taraxasterol causes a significant increase in apoptosis after 24 h. Also,

after 24 h of treatment, taroxasterol induced a significant decrease in gene expression of HPRT, OPN, AKT1, mTOR, and β-Catenin.

Conclusions: Taraxasterol can reduce survival rate and induce apoptosis in TNBC cells through disruption of the AKT/mTOR/β-

Catenin pathway.
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1. Background

Breast cancer is the most common malignancy in
females, approximately one-third of all women’s tumors

(1). Pathologically, the BC is classified into four subtypes

luminal A, luminal B, HER-2+, and triple-negative breast

cancer (TNBC) (2). Among these, the TNBC is known for

the lack of estrogen (ER), progesterone receptors (PR),
and growth factor receptor-2 (HER-2). The TNBC

accounts for 12 - 20% of all BC cases. The incidence rate of

TNBC increases in premenopausal women with more

prevalence in younger (3).

Triple-negative tumors are characterized by
aggressive behaviors with primary metastasis to the

central nervous system, bones, lungs, and liver. Triple-

negative tumors contain poor response to therapies,

poor prognosis, and low survival rates compared to

other BC subtypes (4). Unlike ER and HER-2+ cancers,
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TNBCs are highly resistant to current therapies because

they are insensitive to endocrine and molecularly
targeted treatments. Currently, only systemic
chemotherapy and surgery are considered the main

management for TNBC cases (5).

Over the thousands of years of human life, a large

number of natural products of herbs have been used for

the treatment of various diseases (6). In the 1950s,

scientists systematically investigate natural organisms

as a source of effective anticancer substances. Recently,

it is proposed that the application of natural products is

the most successful strategy for discovery of new anti-

cancer drugs (7). Taraxasterol ((3β, 18α, 18α)-Urs-20(30)-

en-3-ol)), as a pentacyclic triterpene, is isolated from

Taraxacum officinale (TO) plant. Taraxacum officinale is

used in traditional medicine for its milk-enhancing,

choleretic, diuretic, and anti-inflammatory activities.

Previous studies showed that TO extracts are effective in

inhibiting proliferation and induction of apoptosis in

cancer cells. According to the studies, taraxasterol is an

important bioactive compound with strong anti-

inflammatory and antioxidant activities (8).

The PI3K/AKT/mTOR signaling pathway plays an

essential role in many cellular processes and is often

altered in BC, leading to increased tumor growth. Small

molecule inhibitors can effectively target the key
elements in this pathway (9).

2. Objectives

Generally, development and evaluation of new agents

against TNBC are difficult due to the high biological
heterogeneity. Also, this type of tumor is considerably
resistant to remedies which can potentially develop
metastasis potential. Therefore, there is an urgent need

for identification and development of new potential

therapeutic drugs against TNBC with high efficiency and
low side effects. Thus, the anticancer properties of

taraxasterol on modulation of AKT/mTOR/β-Catenin
signaling pathway (in TNBC cells) were investigated in

the present laboratory-based study.

3. Methods

3.1. Taraxacum officinale Extraction and Taraxasterol
Isolation

Taraxacum officinale was prepared by the Research

Institute of Medicinal Plants (Tehran, Iran). The

authenticity of the plant was confirmed by a herbalist.

Then, the active substance of TO was extracted and

purified under the supervision of the extraction

company (Milad Herbal Medicine, Tehran, Iran). The

desired extract was classified into different doses of 1, 2,

4, 8, 16, 32, 64, and 128 μM.

3.2. Cell Culture

The MDA-MB-231 cell line was obtained from the
Pasteur Institute (Iran, Tehran). The cells were cultured

(37°C, 5% CO2) in RPMI-1640 medium (Gibco, Germany)

supplemented with 10% fetal bovine serum (FBS) (Gibco,

Germany) and lack of antibiotics. All protocols of cell
culture were considered carefully based on the

previously published studies (10).

3.3. Laboratory Protocol

Following the preparation of various doses of TO,

TNBC cells were cultured and exposed to TO. The

procedures of exposure were applied based on the
different times.

3.4. Cell Viability Assessment

2,5-diphenyl-2H-tetrazolium bromide (MTT) test was

used to assess the cell viability. To this aim, 15 × 103 cells

were cultured in each well of a 96-well plate and
incubated overnight. Then, the cells were treated with

various concentrations of taraxasterol (Sigma,

Germany) for 24, 48, 72, and 96 h. The supernatant was

discarded and MTT solution (Sigma, Germany) was

exposed to each well (5 mg/mL in culture medium) for
3h. Following incubation, the supernatant was removed

and formazan crystals were dissolved with 100 μL of

DMSO. Optical density (OD) was measured at 570 nm

with background subtraction at 690 nm. Data from

three independent experiments were normalized using
the following equation: Cell viability (%) = (OD sample

value)/(OD cell control) × 100 (11).

3.5. Cell Apoptosis Investigation

The percentage of fragmented DNA following 24 h
treatment with IC50 concentration of taraxasterol was

calculated using diphenylamine assay. For the data

report, the measurement of OD of samples was read by a

spectrophotometer at 600 nm as described by Cohen

and Duke (12).

3.6. Gene Expression Analysis

Gene expression assessment was performed by the

real-time PCR method. Following the treatment of the

cells with IC50 concentration for 24 h, the RNA was

isolated from 1 × 106 cells of control and treatment cells

using TRIZol reagent (Invitrogen, USA), and RNA purity
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and integrity were evaluated using a Nanodrop

machine. Complementary DNA (cDNA) synthesis was

carried out using a cDNA synthesis kit (Vivantis

Technologies, Malaysia) and a real-time PCR process was

performed by SYBR Premix Ex Taq Technology (TaKaRa
Bio Inc., Japan). All laboratory processes were conducted

according to the manufacturer’s instructions using the

Applied Biosystems StepOne Real-Time PCR System.

Changes were obtained based on the comparative

method of Ct (2-ΔΔct) (13). GAPDH was used as an internal

control and the primer sequences of various genes

(HPRT, OPN, AKT1, mTOR, PTEN, β-Catenin, and GAPDH)

were designed by GeneRunner software (v.3.05)

according to Table 1.

Table 1. The Primer Sequences of Genes

Genes Sequences

HPRT
F: 5´-TGGACAGGACTGAACGTCTTG-3´

R: 5´-CCAGCAGGTCAGCAAAGAATTTA-3´

OPN
F: 5´-ACCCTTCCAAGTAAGTCCAACG-3´

R: 5´-GGTGAGAATCATCAGTGTCATCTAC-3´

AKT1
F: 5´-AGCGACGTGGCTATTGTGAAG-3´

R: 5´-GTACTCCCCTCGTTTGTGCAG-3´

mTOR
F: 5´-AACTCCGAGAGATGAGTCAAGA-3´

R: 5´-AGTTGGTCATAGAAGCGAGTAGA-3´

PTEN
F: 5´-TGGATTCGACTTAGACTTGACCT-3´

R: 5´-TTTGGCGGTGTCATAATGTCTT-3´

β-catenin
F: 5´-TACCTCCCAAGTCCTGTATGAG-3´

R: 5´-TGAGCAGCATCAAACTGTGTAG-3´

GAPDH
F: 5´-TCCCTGAGCTGAACGGGAAG-3´

R: 5´-GGAGGAGTGGGTGTCGCTGT-3´

3.7. Statistical Analysis

Following data extraction, the Kolmogorov-Smirnov

test was the assessment of normal data distribution.

One-way analysis of variance (one-way ANOVA) was used

for statistical analysis and the Tukey post hoc test was

conducted to determine the difference between the

groups. Statistical Package for the Social Sciences 16

(SPSS Inc., Chicago, IL) was used for data analysis, and

the results were expressed as Mean ± standard error. A P

< 0.05 was also considered statistically significant (14).

4. Results

4.1. Taraxasterol and Triple-Negative Breast Cancer Cell
Viability

Following 24, 48, 72, and 96 h of treatment with

various concentrations of taraxasterol, the TNBC cell

viability was decreased significantly (P < 0.05) in the

concentration- and time-dependent manner. These time

and concentration dependencies were 24h of

taraxasterol exposure with concentrations of 32, 64, and

128 μM, 48 h of taraxasterol exposure with

concentrations of 8, 16, 32, 64, and 128 μM, 72 h of
taraxasterol exposure with concentrations of 4, 8, 16, 32,

64, and 128 μM and 96 h of taraxasterol exposure with

concentrations of 2, 4, 8, 16, 32, 64 and 128 μM which

caused low TNBC cells viability. Also, the IC50 of

taraxasterol was detected at 439.37 ± 6.8, 213.27 ± 5.78, 121

± 7.98 and 27.86 ± 9.66 μM respectively after 24, 48, 72,

and 96 h of exposure. These findings approved that the

viability of TNBC cells decreases dramatically following

exposure to taraxasterol. Also, it was concluded that by
the acceleration of the taraxasterol dose and the time of

exposure, the Viability Index decreases significantly
(Figure 1).

4.2. Taraxasterol and Triple-Negative Breast Cancer Cells
Apoptosis

According to the data analysis, taraxasterol

represented apoptotic features (44.02 ± 2.3% vs 1.01 ±
0.002% respectively in treatment vs control groups)

significantly (P < 0.05) after 24 h at the IC50

concentration (439.37 µM) (Figure 2).

4.3. Taraxasterol and Gene Expression in Triple-Negative
Breast Cancer Cells

Following 24 h of treatment with IC50 concentration

(439.37 µM) of tarxasterol, a significant (P < 0.05)
decrease was detected in the expression of HPRT (0.72 ±

0.2 in treatment group than 1 in control group), OPN

(0.49 ± 0.1 in treatment group than 1 in control group),

AKT1 (0.85 ± 0.1 in treatment group than 1 in control

group), mTOR (0.73 ± 0.1 in treatment group than 1 in

control group) and β-catenin (0.43 ± 0.11 in treatment

group than 1 in control group) genes. It can be

concluded that the gene expression of HPRT, OPN, AKT1,

mTOR, and β-catenin was decreased respectively by 24%,

29%, 12%, 55%, and 53% following tarxasterol exposure.

PTEN (1.08 ± 0.22 in the treatment group than 1 in the

control group) gene expression was also increased

significantly (P < 0.05) by 1.08 after tarxasterol exposure

(Figure 3).

5. Discussion

The TNBC is characterized by poor prognosis and

resistance to conventional therapies. Phytochemicals

such as taraxasterol, a bioactive compound from TO,

have demonstrated anticancer properties. The current

https://brieflands.com/articles/jkums-141551


Abdolmaleki A et al. Brieflands

4 J Kermanshah Univ Med Sci. 2025; 29(2): e141551

Figure 1. Effects of taraxasterol on viability of breast cancer (BC) cells. Data were presented as mean ± S.E.M. *P < 0.05, **P < 0.01, and ***P < 0.01 compared to control.

Figure 2. Effects of taraxasterol on apoptosis rate in breast cancer (BC) cells. Data were presented as mean ± S.E.M. ***P < 0.01 compared to control.

study confirms that taraxasterol induces apoptosis and

reduces viability in MDA-MB-231 cells.

Taraxacum officinale antitumor activity was initially
reported in 1981 (15). It exhibits cytotoxicity by
promoting TNF-α and IL-1α production (16), key
cytokines in apoptosis induction (17). Apoptosis is

mediated via both extrinsic (death receptor) and

intrinsic (mitochondrial) pathways. Taraxacum officinale

also inhibits cancer cell invasiveness by attenuating

phosphorylation of focal adhesion kinase (FAK) and Src,

and reducing matrix metalloproteinases (MMP-2/9)

activity (18).

Sox2, a pluripotency-associated transcription factor,

is aberrantly expressed in multiple malignancies and

facilitates proliferation and tumorigenesis, positioning

it as a potential therapeutic target (19, 20).

RARβ2 encodes a nuclear receptor involved in

retinoic acid-mediated transcriptional regulation,

critical for morphogenesis and differentiation. Its
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Figure 3. Effects of taraxasterol on gene expression of A, HPRT; B, OPN; C, AKT1; D, mTOR; E, β-Catenin; and F, PTEN in breast cancer (BC) cells. Data were presented mean ± S.E.M. *P
< 0.05 and ***P < 0.001 compared to the control.

expression is often suppressed in cancer, implicating its

role as a tumor suppressor (15, 21).

TNF-related apoptosis-inducing ligand (TRAIL) is a

selective inducer of apoptosis in cancer cells (22),

although resistance mechanisms limit its efficacy. TIPRL

inhibition sensitizes cells to TRAIL via MKK7-JNK

pathway activation. Co-administration with TO

enhances apoptosis through inhibition of the TIPRL-

MKK7 interaction and JNK phosphorylation (15).

Taraxasterol markedly downregulated osteopontin

(OPN), a multifunctional protein implicated in

metastasis and poor outcomes in breast and other

cancers (23). It also suppressed HPRT1 expression, a gene

involved in nucleotide metabolism and highly
expressed in TNBC. HPRT1 overexpression correlates

with aggressive tumor phenotypes and regulates

oncogenic pathways including Notch and ErbB,

indicating its value as a biomarker and therapeutic

target (24).

AKT1, commonly hyperactivated in BC (25), was

downregulated following taraxasterol exposure,

suggesting inhibition at both post-translational and

transcriptional levels. mTOR expression was similarly
reduced (26). PTEN expression, however, remained

unchanged, aligning with prior findings where its

modulation is context-dependent (27).

β-catenin, a key effector of Wnt signaling and

regulator of cell adhesion and transcription, was also

significantly reduced. Aberrant activation of β-catenin

promotes oncogenesis by enhancing proliferation and

invasion (28). Taraxasterol and similar plant-derived

agents disrupt Wnt/β-catenin signaling and inhibit

cancer stem cell function, thereby suppressing tumor

progression (29).

Cytotoxicity analysis revealed that taraxasterol

reduced cell viability in a time-dependent manner, with

IC50 values declining from 439.37 ± 6.8 μM at 24 h to

27.86 ± 9.66 μM at 96 h (P < 0.05), indicating cumulative

toxicity. Apoptosis induction was confirmed via

diphenylamine assay. Gene expression profiling showed

significant downregulation of HPRT1, OPN, AKT1, mTOR,

and β-catenin at 24 h.

The AKT/mTOR/β-catenin signaling axis exhibits

extensive crosstalk with Wnt and Notch pathways (15, 18,

29). Wnt signaling enhances β-catenin stabilization and

nuclear translocation, while AKT/mTOR potentiates its

activity. Notch signaling further modulates β-catenin via

NICD interactions, reinforcing proliferative and survival

signaling. Therefore, simultaneous targeting of these

interconnected pathways may offer an effective strategy
for TNBC therapy.

5.1. Conclusions

Taraxasterol as a pentacyclic triterpenoid available in

the TO herb can potentially exert anticancer features on

TNBC cells. The process of anti-proliferation of

taraxasterol occurred following two stages of reduced

survival rate and increased apoptosis levels through

disruption of AKT/mTOR/β-Catenin signaling pathway.

Since the administration of taraxasterol for cancer

inhibition was found in a dose and time-associated

manner, it is recommended to design an animal study
for a deep assessment of the treatment.
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5.2. Limitations

Although the plant authenticity was confirmed and

extraction supervised, potential variability in the purity
and composition of taraxasterol extract may affect

reproducibility and consistency of results, especially
since detailed characterization (e.g., purity percentage,

batch-to-batch variation) is not described. The study
relies solely on the MDA-MB-231 TNBC cell line, which

may limit the generalizability of findings across other

TNBC subtypes or BC models with different genetic

backgrounds. Apoptosis was assessed only by
diphenylamine assay measuring DNA fragmentation at

24 hours, without complementary methods (e.g., flow

cytometry, caspase activity) to confirm apoptotic

pathways and kinetics.
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