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Abstract

Background: Graphene and graphene-related materials are broadly applied for biomedical purposes due to their unique prop-
erties. However, little information is available on their toxicity and biocompability, thus it is necessary to assess their safety. We
investigated the cytotoxic and genotoxic effects of graphene oxide nanosheets (GOs) on HT29 cells.
Methods: GOs were synthesized by oxidation of natural graphite flakes according to the modified Hummers method. GOs were
characterized using IR spectroscopy and TEM. Cytotoxicity and genotoxicity of GOs on HT29 cells were evaluated in the range of 10
- 250 µg/mL after 24, 48 and 72 hours of treatment using MTT assay and in the range of 10 - 50 µg/mL after 48h by micronucleous
assay.
Results: The results of IR indicate that the graphite is successfully oxidized. The GOs were found to be 3 - 6µm in length and≤ 1 nm
in diameter by TEM. The half maximal inhibitory concentration (IC50) in different doses were calculated at 50 µg/mLby trypan blue
dye exclusion assay. The results of MN assay showed a significant increase in DNA damage and MN formation in GOs treated samples
as compared with the control sample (P < 0.05).
Conclusions: Concentration, shape, time and physicochemical properties GOs like size, shape, agglomeration rate and surface
chemistry play important roles in inducing cytotoxicity and genotoxicity of treated cells.
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1. Background

Significant advances in nanotechnology have led to an
increasing production of nanomaterial dependent prod-
ucts in a variety of fields such as pharmaceutical, medical
diagnosis, and food packaging.

In recent years, the synthesis of graphene and its
derivatives has increased as Graphene Family Nanoma-
terials (GFNs), including multi-layer and single-layer
graphene, graphene nanosheets, ribbon, graphene oxide
(GO), and revived graphene oxide (rGO) (1). GO is one
of the important derivatives of graphene family whose
unique properties such as low toxicity, unique shape and
geometry, high biomaterial loading ability, and simple
and low-cost synthesis have made it useful in transferring
medications, proteins and genes, such that it has been
extensively used in pharmaceutical and medical fields
in recent years (2). Given the increasing development of
products containing nanographene oxide and increas-
ing exposure of humans and the environment to these
products, their standardization and safety assessment are

highly important (3-7).

Several studies have reported side-effects of nanoparti-
cles on human health and the environment. The cytotoxi-
city of carbon nanotubes on PC12 cell line and its effect on
proteins such as hemoglobin have been reported (8).

No cytotoxicity or apoptosis has been reported due to
graphene oxide nanoparticles on A549 cells line, but acti-
vation of oxidative pathway and its effect on the cell line
have been reported (9). In studies on the effect of size of
graphene nanoparticles, nanotubes larger than 2µm were
found to enter the cell with difficulty (10, 11).

In the present study, the cytotoxicity and genotoxicity
of single-layer graphene oxide nanosheets on colon can-
cer HT29 cell line were investigated by Trypan Blue and Mi-
cronucleus methods.
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2. Methods

2.1. Preparation and Determination of Properties of Graphene
Oxide Nanosheets

The colloidal solution of GO nanosheets was procured
from NAMAGO Company in Tehran. According to this com-
pany, the solution had been prepared by modified Hum-
mers method (12).

The average shape and diameter of nanosheets tested
were measured by Transient Electron Microscope (CM120,
Philips) and their properties were assessed using IR device
(Spectrum Two, Perkin Elmer).

2.2. Preparation of different concentrations of graphene oxide
nanosheets

The colloidal solution with an initial concentration of
1000 µg/mL was purchased, and diluted with deionized
distilled water to 10, 15, 25, 50, 100, and 200 µg/mL concen-
trations.

2.3. Cell Culture

According to ISO 10993, the colon cancer HT20 cell line
is a suitable cell for cytotoxicity and genotoxicity studies,
which was procured from Tehran’s Pasteur Institute. This
cell line was cultured in RPMI-1640 (Sigma) medium con-
taining 10% bovine fetal serum (Sigma), 10 µg/mL of strep-
tomycin, and 100 units/mL of penicillin (Sigma), in a 37°C
incubator with 5% CO2 and 96% humidity. All cell treat-
ments were performed in cell growth logarithmic phase.

2.4. Cell Mortality Assessment by Trypan Blue Method

Cell mortality rate was assessed by Trypan Blue
method. HT20 cells were cultured in 6-well plates
(1 × 105 cell per well) and incubated for 24 hours.
Then, cell were treated with 10, 15, 25, 50, 100, and 200
µg/mLconcentrations of GO nanosheets, and one well
was left untreated as negative control. The test was re-
peated three times. The supernatant was removed after
the intended exposure periods, and cells were detached
from the substrate with trypsin/EDTA. The supernatant
was collected and centrifuged at 750 rcf for 5 minutes.
Then, 10µL of cell suspension was added to 10µL of trypan
blue, and stained in 2 - 3 minutes. Cells were counted by
a Neubauer slide under an optical microscope. The cell
mortality percentage was reported as the number of dead
cells over the total number of cells.

2.5. The Changes in Cell Morphology

HT20 cell line was cultured in 24-well plates, with
20,000 cells in each well, and after 24 hours of incubation,
treated for 24, 48, and 72 hours with 10, 15, 25, 50, 100, and
200µg/mL concentrations of GO nanosheets. One well was
left untreated as negative control. Then, using an optical
microscope, the contrast phase was observed and exam-
ined.

2.6. Cell Ultrastructure Assessment with Electron Microscope

Electron microscope images were examined to con-
firm penetration of GO nanosheets in the cell. HT20 cells
were cultured in a 25 cm2 flask, and then treated with 50
µg/mL concentration after incubation for 24 hours, and
one untreated flask was chosen as control. After 48 hours
of treatment, trypsinized cells were centrifuged at 750 rcf
for 5 minutes. They underwent primary fixation in 2.5%
glutaraldehyde, and the secondary fixation in 1% osmium
tetroxide, followed by dehydration in increasing concen-
trations of alcohol, and then embedding in epoxy resin.
Next, thin sections were prepared by a microtome and ex-
amined under an electron microscope (CM120, Philips).

2.7. Micronucleus Test

25 × 103 HT20 cells were cultured in a Petri dish. After
24 hours of incubation, they were treated with 10, 15, 25, 50,
100, and 200µg/mL concentrations of GO nanosheets, and
one plate was left untreated as negative control. Immedi-
ately after treatment, cytokalazin B with a final concentra-
tion of 3µg/mL was added to Petri dishes, and fixed after 48
hours of incubation at 37°C with 5% CO2 and 96% humidity.
No significant change was observed in the culture medium
pH in any of the Petri dishes. Cultures were duplicates in
three independent repeats.

2.8. Preparation of Slides

After treatment period, the supernatant was removed
from Petri dishes and rinsed in cold PSB. Then, 500 µL of
acetic acid/methanol (1:6) was added over 15 minutes, and
pre-fixation was carried out in cool temperature. The final
fixation with acetic acid/methanol (1:6) was performed in
15 minutes, and cells were stained with 20% Giesma solu-
tion. After coding, Petri dishes were examined with an op-
tical microscope of 100 × magnification.

2.9. Nuclear Division Index (NDI) by Observation and Assess-
ment of Slides

A minimum of 500 viable cells were assessed in each
sample, and cells with one, two and three nuclei were
counted, and NDI was calculated according to Michael
Fenck’s method using the following equation:
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NDI = (M1 + 2M2 + 3M3 + 4M4)/Nt

Where: N1 - N4 are cells with one, two, three or four nu-
clei and N is total number of viable cells.

2.10. Micronucleus Analysis

Micronucleus was assessed with a minimum of 1000
binucleate cells counted with an optical microscope of 100
× magnification.

To micronucleus frequency, cells in cytokinesis should
have the following features: be binucleate (BN); have intact
nucleus membrane, or be in one cytoplasmic area; both
nuclei should have similar staining pattern and intensity;
both nuclei may be connected via a fine nucleoplasmic
bridge, which should not be wider than 1/4 of nucleus di-
ameter; the two main nuclei in a cell may be touching, but
should not overlay each other; cytoplasmic area with a BN
cell membrane should be intact, and clearly distinct from
an adjacent cytoplasmic area.

2.11. Nucleoplasmic Bridges and Nuclear Buds

To assess NPBs and NBUDs, a minimum of 1000 BN cells
were counted using an optical microscope of 100 × mag-
nification. Structures attached to nucleus, not wider than
1/4 of nucleus diameter, with similar staining patterns and
intensity are known as nucleoplasmic bridges (NPBs). In
terms of shape and staining intensity, Nuclear Buds are
similar to micronuclei, which are connected to the nucleus
via a bridge narrower than a bud or a very narrow bridge.
Thomas et al. proposed that MPBs/MN ratio is indicative of
the type of abnormalities formed, such that the total num-
ber of NPBs in a treated cell over the total MN in the same
cell shows aneugenicity or clastogenicity of abnormalities.
When aneugenicity dominates clastogenicity, minimum
NPBs is formed and NPBs/MN tends to zero, and when clas-
togenicity dominates, this ratio exceeds 0.7, which can be
assessed by Centromere Probe method (13).

2.12. Statistical Method

Data obtained are presented as mean ± SD, and analy-
ses were carried out in SPSS using student t-test at signifi-
cance levels of P≤0.05 and P≤0.01, and graphs were plot-
ted by Excel.

3. Results

3.1. Graphene Oxide Nanosheets Characteristics

Characteristics of GO nanosheets such as size and di-
ameter were determined using a transient electron micro-
scope. Length of single-layer nanosheets was reported in
these images as 3 - 6µm with diameter < 1 nm. IR results in-
dicate proper oxidation of GO nanosheets. Characteristics

of GO nanosheets are presented in Table 1, and electron mi-
croscope images and IR graphs are shown in Figure 1 and
Figure 2, respectively.

Figure 1. Graphene oxide nanosheet images by transient electron microscope

3.2. Cell Mortality by Trypan Blue Method

Membrane integrity was preserved in assessing cell
mortality by Trypan blue method. Trypan blue stain passes
through membrane of damaged and dead cells, and thus
these cells are seen in blue and viable cells with intact
membranes are seen in transparent colors. The results pre-
sented in Figure 2 show an increase in cell mortality with
increasing concentration of nanoparticles and treatment
time, with a significant difference compared to control in
all concentrations and times (24, 48, and 72 hours) with the
exception of 10 µg/mL in 24 hours (P ≤ 0.05*). The high-
est cell mortality rate was observed in different concentra-
tions and treatment time of 72 hours. The results showed
50% cell mortality (IC50) at concentration of 50µg/mL and
treatment times of 24, 48, and 72 hours. The results are
shown as mean ± SD in three independent repeats.

3.3. Changes in Cell Morphology

Cell morphology assessment is an important indica-
tor in cell studies. Changes in HT20 morphology follow-
ing exposure to different concentrations of GO nanosheets
at 24, 48, and 72 hours to show cytotoxicity effects of GO
nanosheets compared to untreated samples are shown
(Figure 3A, B, C, and D). Dramatic changes are observed in
the cells morphology such as: cell wrinkling, cytoplasmic
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Table 1. Graphene Oxide Nanosheets Characteristics

Sample Concentration,µg/mL Size (TEM) Length andWidth,µm Size (TEM) Diameter, nm Coverage Shape

Graphene oxide 1000 3 - 6 ≤ 1 None Single-layer nanosheets

Figure 2. IR graph of GO nanosheets

degeneration, nucleus pigmentation, and permeability of
membrane at IC50 concentration, and images reported
show time-dependency of the induced effects. No induced
effects were observed at lower concentrations than IC50

compared to untreated sample.

3.4. Electron Microscope Examination of Cell Ultrastructure

Electron microscope images show that GO nanosheets
have not penetrated the cell and are observed around
membrane in agglomerated form.

3.5. Micronucleus Test

The results in Figure 5 show a reduction in
concentration-dependent NDI. The results are reported as
mean± SD in three independent repeats in 1500 cells, and

show significant differences compared to control sample
in all concentrations (P ≤ 0.05*).

An increase in concentration-dependent micronucleus
count is also observed, which is significantly different com-
pared to control at 10µg/mL with P≤0.05 and at 15, 25, and
50µg/mL with P≤0.01**. The results are shown as mean±
SD in three independent repeats with 3000 BN cells.

MN and NBUDs counts were performed with 1000 BN
cells. As shown in Figure 5, MN and NBUDs counts in-
crease with increasing concentration, with a significant
difference from control sample (P ≤ 0.05*). The results are
shown as mean ± SD in three independent repeats with
3000 BN cells.
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Figure 3. Optical microscope contrast phase images of HT20 treated with GO nanosheets at IC50 concentration after 24 hours (A), 48 hours (B), and 72 hours (C), and untreated
cells

4. Discussion

Nanomaterials possess unique physicochemical prop-
erties and have applications in a variety of fields. Stud-
ies have revealed their different biological properties in in-
vitro and in-vivo conditions, which determine the role and
application of nanomaterials (1).

In recent years, graphene and its derivatives have been
substantially used for their unique properties in differ-

ent fields such as medication delivery/therapy, laboratory
equipment, etc. Many studies conducted on graphene fam-
ily have shown contradictory results regarding their bio-
compatibility or otherwise (1-8).

The present study investigated cytotoxicity and geno-
toxicity of GO nanosheets in colon cancer HT20 cell line.
Trypan blue test was used to determine IC50 concentration,
and then concentrations less than that were chosen in as-
sessing genotoxicity. As discussed in the results section, 50
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Figure 4. The effect of GO nanosheets on HT20 cell mortality at different concentra-
tions and treatment times of 24, 48, and 72 hours. P ≤ 0.05 was taken as significant
(P ≤ 0.05*). The results are reported as percentage of cell mortality compared to
control and presented as mean ± SD.
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Figure 5. MN, NPBs, NBUDs counts, and NDI in BN cells. P ≤ 0.05 was taken as sig-
nificant (P ≤ 0.01**, P ≤ 0.05*).

µg/mL concentration of GO nanosheets was determined as
IC50, and genotoxicity was assessed by micronucleus test at
concentrations of 10, 15, 25, and 50 µg/mL. Micronucleus
is a sensitive and reliable test for cytotoxicity and geno-
toxicity. NDI result was used in assessing the reduction in
cell proliferation and cytotoxicity, and micronucleus fre-
quency results of NPBs and NBUDs were used in assessing
genotoxicity.

The significant reduction in NDI compared to control
at all concentrations indicated delayed cell cycle, and the
lowest cell proliferation rate was observed at 50µg/mL. Ac-
cording to Trypan blue results, 50 µg/mL was reported as
IC50, at which significant changes in cell morphology were
observed including cell wrinkling, cytoplasmic degrada-
tion, nucleus pigmentation, and membrane permeability.
According to NDI data, a significant reduction in NDI of
40% compared to control was reported (P ≤ 0.05).

Micronucleus is a reliable and effective method for
direct and indirect assessment of cell and DNA damage.
Micronuclei are formed due to irreparable chromosomal
gaps, DNAs left behind repair, chromosomal parts with no

centromere, asymmetric chromosomal rearrangement,
cell cycle checkpoint defects, chromosomal instability, etc.
NPBs are the result of the telomere end attachment and
an indicator of de-centric chromosomes, and NBUDs are
formed by genetic improvement, chromosomal instability
and elimination of DNA repair complexes (12, 14). As dis-
cussed in the results section, with increasing concentra-
tion of GO nanosheets, significant increases are observed
in NPBs and NBUDs compared to control (P ≤ 0.05), in-
dicating induced genotoxicity at concentrations less than
IC50.

The electron microscope images show non-entry of
GO nanosheets into the cell. Observing single-layer GO
nanosheets in biological samples with transient electron
microscope is very difficult, but since GO nanosheets ag-
gregate and fold in culture medium compared to pure
water, their penetration into the cell is easily visible. Go
nanosheets absorb amino acids and nutrients of the cul-
ture medium, and thus induce oxidative stresses (15-17).
Hence, cytotoxicity and genotoxicity are probably indi-
rectly induced, and the damage appears to be caused
by oxidative stress pathways and oxidation of nuclear
molecules, which induce cytotoxicity and genotoxicity (18,
19).

In studies conducted on A540 cells with GO, their high
biocompatibility was confirmed by Trypan blue, LDH test,
CCK-8 test, and apoptotic technique with Anxin kit. But an
increase in ROS oxidation was observed at high concentra-
tions and GO was recommended as a biocompatible carrier
in medication transmission (8). Wang et al. reported toxic-
ity of GO at 50 µg/mL and higher concentrations (20).

In a study conducted by Chang et al., no nanoparticle
penetration into the cell was observed, which suggests its
biocompatibility (8). In a study by Lewinski et al., Go size
less than 100 - 5 nm was used as a carrier, and penetration
into the cell was confirmed by an electron microscope (21).
Moreover, in a study conducted by Wang et al., GO accumu-
lation in fibroblast cells was reported (20). In a study on
small negatively charged carbon nanotubes, easy penetra-
tion of nanoparticles into the cell was reported. But, 2µm
carbon nanotubes entered the cell with difficulty (11).

In the present study, Go nanosheets did not enter
the cell, but cytotoxicity was reported at concentrations
greater than 50 µg/mL, and genotoxicity was observed
at lower concentrations, which was induced by oxida-
tive stress, and therefore lack of biocompatibility of GO
nanosheets was reported. The difference in these reports
can be attributed to GO synthesis method and related char-
acteristics, and also the cell model used (22-29).
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4.1. Conclusion

Concentration, shape, duration, physicochemical
characteristics of GO such as size and shape, agglomer-
ation, and surface chemistry have key roles in inducing
cytotoxicity and genotoxicity in treated cells.
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