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Abstract

Context: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was

first identified in Wuhan, China. From the outset, this highly contagious and dangerous illness posed significant risks and

challenges for global healthcare systems and populations. Scientists and healthcare professionals worldwide have been striving

to develop effective treatments for severe acute respiratory SARS-CoV-2 infection, employing both pre-existing and innovative

approaches. However, a specific drug targeted explicitly against COVID-19 remains elusive. Despite the reduced prevalence of

severe cases and the predominance of the SARS-CoV-2 Omicron variant, COVID-19 continues to pose significant risks, particularly

for polymorbid patient groups. This review focuses on the potential antiviral effects of promising new drugs, including

ensitrelvir, clazakizumab, upamostat, and others.

Evidence Acquisition: An analytical review was conducted using the Scopus, PubMed, EMBASE, ScienceDirect, and Google

Scholar databases for publications related to promising drugs against SARS-CoV-2, their mechanisms of action, and potential

therapeutic effects up to November 2024. Selection criteria included: (1) Free-text availability; (2) English language; (3) relevance

to the publication's theme a total of 104 articles were initially selected. Of these, 27 articles were excluded for not meeting the

free-text criterion, 14 were excluded due to language incompatibility, and 28 were excluded for thematic irrelevance. Ultimately,

data from 35 articles were analyzed and summarized for this review.

Results: Thirty-five scientific studies were reviewed to describe current paradigms and emerging concepts in SARS-CoV-2

treatment. Current drugs with proven efficacy include: (1) Combined monoclonal antibodies targeting the S-protein

(casirivimab/imdevimab); (2) monoclonal antibody preparations against the S-protein (pemivibart; vilobelimab); (3) viral

replication inhibitors (molnupiravir); (4) protease inhibitors (nirmatrelvir/ritonavir); (5) immunosuppressants

(dexamethasone; tocilizumab). The review also highlights drugs under development targeting traditional pathways [e.g., viral

protease, interleukin-6 (IL-6)] and those aimed at novel mechanisms (e.g., antigalectin-3; adhesion blockers).

Conclusions: Although numerous drug effects and potential drug combinations for COVID-19 have been described, limited

clinical trials and research focus on identifying novel treatment approaches. Comprehensive investigations are needed to assess

and evaluate the risks of different treatment strategies, minimizing potential short- and long-term complications for patients.

Such advancements will pave the way for more optimal and effective medical treatment of COVID-19.
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1. Context

In 2019, cases of severe acute respiratory syndrome

were first reported in Wuhan, Hubei province, China.

The illness spread rapidly worldwide, resulting in

serious health consequences for the global population

and healthcare systems (1). By November 2024, over 776

million people had been diagnosed with the

coronavirus infection, commonly known as coronavirus

disease 2019 (COVID-19), which is caused by the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

virus.

1.1. Morphology of Virion
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Syndrome coronavirus 2 is an enveloped virus with a

positive ribonucleic acid (RNA) strand (+ssRNA)

belonging to the Coronaviridae family of viruses (2). The

virus contains four structural proteins (Figure 1): Spike

(S) protein—a glycoprotein spike, envelope (E) protein,

membrane (M) protein, and nucleocapsid (N) protein

(3).

The S-protein is presented as a spike on the surface of

the viral particle and is responsible for binding the virus

to angiotensin-converting enzyme 2 (ACE2) receptors

(4). These receptors are abundant on epithelial cells of

the respiratory tract, such as type 2 alveolocytes (5, 6).

The ACE2 receptors are also found on cells in the upper

esophagus, ileal enterocytes, myocardial cells, proximal

tubule cells of the kidneys, and bladder cells (7), leading

to a wide range of possible virus-organ interactions.

Among the primary clinical manifestations of COVID-

19, particularly the Omicron variant, are fever, cough,

shortness of breath, and dyspnea. Although SARS-CoV-2

can enter various organs, it predominantly affects the

respiratory system and blood vessels. Other systems,

including the gastrointestinal (GI) tract, cardiovascular,

hepatobiliary, renal, and central nervous systems, may

also be impacted, though less commonly (8). These

effects may result from mechanisms such as viral

toxicity, ischemic injury caused by vasculitis,

thrombosis or thromboinflammation, impaired

immune regulation, and dysregulation of the renin-

angiotensin-aldosterone system (9).

As a result, SARS-CoV-2 can trigger a wide range of

pathological processes. This raises critical concerns

regarding effective antiviral and systemic treatment for

patients diagnosed with coronavirus infection, as the

extensive inflammatory and infectious process affects

the entire organism, potentially leading to unfavorable

outcomes or even death (10).

Currently, several commonly used treatment

strategies exist for COVID-19. However, mutations, the

emergence of novel strains, and the increasing

resilience of the virus pose significant challenges. These

developments reduce the effectiveness of standard

treatment regimens, potentially rendering them

inadequate (11, 12). This underscores the urgent need to

develop new drugs and treatment approaches for SARS-

CoV-2 to enhance the efficacy of medications and

therapeutic plans. A summary of medicines in

development is provided in Table 1.

Table 1. List of Medicines in Development Against Syndrome Coronavirus 2

Drugs Mechanism of Action

Ensitrelvir Inhibitor of SARS-CoV-2 3CL protease

Clazakizumab Monoclonal antibody with a high affinity for human interleukin-
6

Upamostat Block the attachment of the virus to the cell surface

CK0802 Suppress intense immune responses

Antigalectin-3 Decrease in the secretion of cytokines IL-1, IL-6, and TNF-α by
macrophages and dendritic cells

Lufotrelvir Inhibitor of SARS-CoV-2 3CL protease

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; IL-

6, interleukin-6.

2. Ensitrelvir

Ensitrelvir (Xocova), a newly synthesized oral

inhibitor of the SARS-CoV-2 3CL protease (Figure 2), has

been used to treat patients with mild to moderate

COVID-19 or asymptomatic SARS-CoV-2 infection (13, 14).

Clinical trials demonstrated that a 5-day course of

ensitrelvir rapidly reduced viral titer and viral RNA

levels between days 2 and 6 in the study population.

Minor side effects included decreases in high density

lipids (HDL) and triglyceride levels and increases in total

bilirubin and iron levels. Importantly, these changes

were asymptomatic and resolved without additional

treatment.

A potential limitation of the study is that

participants had received at least one dose of a COVID-19

vaccine, making it challenging to assess the drug's

standalone efficacy. However, this reflects current global

realities, as a significant portion of the population has

already been vaccinated against SARS-CoV-2 (15).

3. Clazakizumab

Clazakizumab is a genetically engineered humanized

monoclonal antibody with a high affinity for human

interleukin-6 (IL-6) (16). As a direct ligand inhibitor that

does not bind to circulating soluble receptors,

clazakizumab may outperform IL-6R inhibitors,

potentially offering greater benefits to patients with

severe disease complicated by hyperinflammation

(Figure 2).

Clinical trial results suggest that adding

clazakizumab to standard therapy improves the 28-day

survival rate without mechanical ventilation and

enhances overall survival at 28 and 60 days compared to

a placebo. However, a potential drawback is the reported

association between clazakizumab and hypoxemia,
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Figure 1. Morphology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Figure 2. Life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mechanisms of action of promising preparations against SARS-CoV-2

which has been observed as a side effect. This raises

concerns about its safety, as the treatment may lose

effectiveness if the patient develops severe hypoxemia,

warranting further evaluation of its risk-benefit profile

(17).

4. Upamostat

Current treatment strategies for COVID-19 primarily

target the virus itself rather than host factors, which

also play a role in viral spread and entry. For instance,

https://brieflands.com/articles/jmb-157269
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transmembrane serine protease 2 (TMPRSS2) facilitates

the cleavage of the SARS-CoV-2 spike protein (18, 19).

Upamostat, a prodrug of WX-UK1, targets the activity of

multiple serine proteases (20). By doing so, upamostat

blocks viral attachment to the cell surface and inhibits

viral uptake by host cells (Figure 2).

A recent outpatient study on upamostat in patients

exhibiting two moderate or severe symptoms of COVID-

19, but not requiring hospitalization, demonstrated that

the drug is safe and well-tolerated. It showed high

bioavailability when self-administered and was

intracellularly converted to WX-UK1. The study reported

no adverse effects on liver, kidney, or hematological

parameters, and no bleeding was observed. These

findings suggest a modest anticoagulant effect, which

could be potentially beneficial for COVID-19 patients, as

coagulopathy is one of the most severe complications of

the disease (21).

5. CK0802

Regular T-cells have shown potential in the treatment

of COVID-19 (22) (Figure 2), as they can mitigate excessive

immune responses (23). A randomized, double-blind,

placebo-controlled phase 1 RESOLVE clinical trial

investigated the safety and early efficacy of CK0802, a

cryopreserved allogeneic umbilical cord blood (UCB)

Treg cell product, in patients with moderate to severe

COVID-19 (24). The study confirmed the safety of this

therapy in critically ill patients with acute respiratory

distress syndrome (ARDS) associated with COVID-19;

however, its efficacy remains uncertain, necessitating

larger clinical trials.

This treatment approach holds promise due to its

convenience. The use of cryopreserved cell therapy

products allows for application in intensive care unit

settings without requiring complex on-site recovery of

cell products. The therapy involves the infusion of ready-

to-use CryoStore CS50N bags, which can be thawed

bedside, and the capability to store medication stocks

on-site ensures immediate availability (25). Overall, this

method appears highly advantageous and has the

potential to revolutionize COVID-19 treatment

paradigms.

6. Antigalectin-3

In COVID-19, the severity of the disease correlates

with an increase in galectin-3 levels (26), a mammalian

β-galactoside-binding lectin (27). Galectin-3 plays a role

in regulating systemic and pulmonary pro-

inflammatory cytokine profiles by promoting IL-18

production by macrophages, which activates NLRP3

inflammasomes (28) (Figure 2). The therapeutic effect of

antigalectin-3 involves reducing the secretion of

cytokines such as IL-1, IL-6, and tumor necrotic factor –

alpha (TNF-α) by macrophages and dendritic cells (29),

thereby mitigating inflammatory responses.

The investigational drug GB0139, an inhaled

thiodigalactoside inhibitor of galectin-3, has

demonstrated safety in COVID-19 patients. Clinical data

have shown reductions in markers of inflammation,

including C-reactive protein (CRP), neutrophil-to-

lymphocyte ratio (NLR), and chemokine CXCL10, in

patients treated with GB0139 compared to those

receiving a placebo (30). These findings suggest that

targeting galectin-3 could provide a promising anti-

inflammatory strategy for managing COVID-19.

7. Lufotrelvir

PF-00835231 is a small-molecule protease inhibitor

designed to target the 3CL protease of SARS-CoV-2, an

essential enzyme responsible for viral replication, and is

also implicated in the earlier SARS outbreak (31-33)

(Figure 2). In a randomized, double-blind, placebo-

controlled phase 1 clinical trial, single doses of its

phosphate prodrug, lufotrelvir, administered via

continuous infusion (50 mg to 700 mg over 24 hours),

demonstrated safety (34).

Lufotrelvir has also shown potential as part of

combination therapy, with a relatively low incidence of

contraindications and side effects (35). A completed

phase 1b study evaluating its safety and efficacy in

hospitalized COVID-19 patients has produced promising

results, paving the way for further exploration in future

clinical trials.

8. Conclusions

The search for an optimal and most effective

treatment strategy for COVID-19 is ongoing, with a

primary focus on preventing and rapidly eliminating

the virus from the body. Key criteria for such treatments

include minimal side effects, efficacy across a range of

patient severities (from mild to severe cases), and ease of

access, storage, and administration. Efforts are also

being made to test combination therapies with existing

https://brieflands.com/articles/jmb-157269
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drugs to enhance their effects, accelerate action, and

mitigate side effects.

While the efficacy of many new drugs against COVID-

19 remains unproven in large-scale clinical trials, early

research data provide a foundation for further testing.

Additionally, the use of innovative drug delivery systems

may play a role in simplifying treatment processes in

the near future. In conclusion, the primary challenge

lies in systematizing all available information to devise

the most effective treatment strategy for managing this

infection.

8.1. Limitations

Based on our analysis, it is important to note that the

new treatment options are still undergoing pre-clinical

and clinical research, and therefore, it cannot be stated

with absolute certainty that they offer comprehensive

treatment solutions.

Moreover, the development of these new treatment

options is driven by the increasing emergence of

therapy-resistant viral particles, which pose a significant

new challenge to healthcare systems.

Additionally, there is growing evidence of adverse

reactions associated with medications targeting

cytokine storms, highlighting another critical factor

that must be considered in the development of new

treatments for COVID-19.
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