
182 © 2022 Journal of Reports in Pharmaceutical Sciences | Published by Wolters Kluwer ‑ Medknow

Original Article

Access this article online

Website:
www.jrpsjournal.com

DOI: 10.4103/jrptps.JRPTPS_172_21

Quick Response Code:

Abstract
Background: Cocrystal formation between an active pharmaceutical ingredient (API) and coformer 
is an applicable technique to change the physicochemical and pharmacokinetic properties. 
Computational methods can overcome the need for extensive experiments and improve the chances 
of success in the coformer selection. In this method, two compounds connect by non-covalent 
interactions that form a unique crystalline structure. Prediction of a cocrystal formation between 
API and coformer can help in the screening and design of new cocrystals. Methods: In this study, 
available data in the literature were applied to develop a prediction method based on binary logistic 
regression to screen cocrystal formation by sum and absolute difference of structural parameters (the 
number of rotatable bonds, Abraham solvation parameters, and topological polar surface area) of 
the two involved compounds. Results: The results showed various factors (eight structural parameters 
of the two compounds) could affect cocrystal formation, and the developed model can predict 
cocrystallization with a probability of about 90%. Conclusion: The related parameter to hydrogen 
bonding basicity and volume of compounds has the most significant effect on cocrystal formation.

Keywords: Abraham solvation parameters, cocrystal, prediction

Introduction

Physicochemical properties of  active 
pharmaceutical ingredients (API), such as 
hygroscopicity, thermal stability, solubility, 
dissolution rate, and bioavailability, have 
an essential part in drug discovery and 
development.[1] Unfortunately, most of the 
candidate APIs have low solubility leading 
to poor bioavailability. To overcome this 
limitation, numerous methods have been 
recommended to increase solubility, such 
as cocrystal formation.[2] Cocrystallization 
technology has caught much attention in 
the pharmaceutical industry, and it can 
improve the properties of an API, such as 
solubility, bioavailability, storage stability, 
and manufacturability.[3,4] It allows better 
products to be produced for the marketplace 
by improving the physical and chemical 
properties of API without any change in 
structure, contrary to the situation that 
happened during salt formation.[5-7] The 
advantage of  cocrystallization is that 
non-ionizable API molecules can form 
cocrystal against the salt formation, so the 

list of acceptable crystal coformers is more 
comprehensive than salt formation.[8]

Cocrystals are structurally homogeneous 
crystalline materials consisting of  two 
molecules that are present in definite 
stoichiometric ratios, interacting with each 
other via a non-covalent bond, especially 
hydrogen bonding. The coformers are 
usually selected from Everything Added to 
Food in the United States (EAFUS) and 
the Generally Recognized As Safe (GRAS) 
lists. The fundamental rule of  selecting 
coformers is based on the possibility of 
forming supramolecular synthons via 
intermolecular interactions.[9]

Based on the FDA guidance, cocrystals 
are a kind of solvates, whereas the second 
component is non-volatile. Some functional 
groups would form strong and directional 
hydrogen bonds, such as amides, heterocyclic 
bases, and carboxylic acids. These groups in 
the structures of APIs and coformers could 
lead to the formation of cocrystals.[1]

Experimental cocrystal preparation and 
characterization are time-consuming, and 
it needs relatively expensive instrumental 
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methods such as powder X-ray diffraction and differential 
scanning calorimetry (DSC).[10]

Cocrystal screening and the possibility of  cocrystal 
formation between API and coformer have become an 
increasingly important part of  crystal engineering over 
the recent years. It can reduce required experiments to 
find out an appropriate coformer for an API.[11] There are 
many reports in the literature in which the attempts of 
researchers to prepare a cocrystal were unsuccessful and 
binary eutectic compositions obtained.[12-16] Investigation of 
factors affecting crystallization, computational approaches 
by various structural parameters for predicting cocrystal 
formation, and screening by different methods have been 
advanced in recent years to predict cocrystal formation. 
Structural parameters such as shape and polarity, Hansen 
solubility parameters of  API[17] and coformer, ab initio 
molecular dynamics method,[18] conductor-like screening 
model for real solvents,[19,20] molecular electrostatic 
potential surfaces to assess molecular complementarity 
between two cocrystal components,[21] and realistic 
lattice energy landscapes[22] were suggested as essential 
parameters in cocrystal formation. In some cases, new 
statistical methods, e.g., multivariate adaptive regression 
splines methodology, were used for developing a prediction 
model.[23] In the majority of  the in silico methods, a few 
compounds have been applied. Recently, descriptors based 
on fingerprint vectors and molecular graphs were applied 
for developing a model by artificial neural networks 
for a data set extracted from the Cambridge Structural 
Database.[24]

Valid and comprehensive experimental data are necessary 
to predict new cocrystal formation. One of  the main 
reasons why this method is not mature and accurate to 
provide the acceptable prediction model is inaccessibility 
of  comprehensive and uniform data sets (true positive/
true negative cocrystal formation data). Przybyłek and 
Cysewski[25] have reported a data set comprising 226 
binary mixtures (drug and phenolic acids as potential 
pharmaceutical coformers) classified as cocrystals or simple 
eutectics. They applied a multi-parameter model comprising 
1D and 2D descriptors for cocrystal prediction with a 
probability of about 80%.

Simple statistical models to develop a mechanistic model, 
e.g., based on logistic regression and descriptors [i.e.,
topological polar surface area (TPSA), number of rotatable 
bonds (NRBs), and Abraham solvation parameters of
components], are more acceptable in modeling studies[26]

and could be useful in the future in cocrystal screening
and formation. In this study, a virtual cocrystal screening
process was reported on the basis of  the structural
parameters and logistic regression, and the prediction
validity of  the method was checked by leave-many-out
cross-validation.

Computational Method

A cocrystal formation data set (true positive/true negative) 
comprising 226 data points was taken from a published 
article [Table 1].[25] SMILES (Simplified Molecular-Input 
Line-Entry System Codes) of  compounds, a chemical 
notation that can be used by the computer that represents 
a chemical structure in a way,[27] were collected by searching 
their chemical names in PubChem (https://pubchem.ncbi.
nlm.nih.gov). The numerical values for TPSA, NRB, 
and Abraham solvation parameters were computed by 
ACD/Labs software (https://ilab.acdlabs.com). Abraham 
solvation parameters are independent variables with the 
following solute properties: E is the excess molar refraction, 
S indicates dipolarity/polarizability descriptors of  the 
solute, A is hydrogen-bond acidity, B is the solute hydrogen-
bond acidity and basicity, and V is the McGowan volume 
of the solute.[28] Moreover, A×B was computed as another 
parameter which dealt with solute–solute interactions.[29] 
Then, sum and absolute difference of compounds 1 and 
2’s parameters were calculated.

The binary classification carried out using experimental 
true positive/true negative cocrystal formation was set as 
a dependent variable and sum and absolute difference of 
compounds 1 and 2’s descriptors, i.e., TPSA, NRB, and 
Abraham solvation parameters, set as independent variables 
to develop a model based on logistic regression[30] to predict 
cocrystal formation. Logistic regression models compute 
the probabilities (P) for classification problems with two 
possible outcomes, i.e., P>0.5, class I (cocrystal formation) 
and P<0.5 (no cocrystal formation).

Statistically significant descriptors were selected for the 
logistic regression model based on probability values (P-
value) associated with each descriptor whenever they were 
statistically significant at the 90% level (P<0.1). It displays 
the probability that the descriptor is by chance less than 
10%.[26] The validity of the developed model was checked 
by the leave-10-out cross-validation method. In modeling 
studies, training a model by linear and non-linear models 
is not enough to confirm the prediction capability. The 
developed model should be applied to other data sets which 
did not include in the training of the model. On the way, 
whenever we can say a model is acceptable, it could predict 
the outcome of other compounds with reasonable accuracy. 
Therefore, external validation (test set) is essential. However, 
because of a small sample of available data, cross-validation 
was used. Cross-validation analysis, e.g., leave-many-out, 
is recommended in quantitative structure–activity studies, 
especially when the sample size is small, and some reports 
showed its superiority in external validation.[31,32] Therefore, 
a type of  leave-many-out cross-validation (10 out) was 
applied. It evaluates the prediction capability of the model 
in which 10 compounds are left out from the training set, 
and the trained model was used to predict the removed data 
points. Figure 1 illustrated a schematic representation of 
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Table 1: Experimental cocrystal formation (true positive=1, true negative=0) between compounds 1 and 2[18] and 
probability (P) of a binary response by Eq. (1) (P>0.5: cocrystal formation, P<0.5: no cocrystal formation) and prediction 

cocrystal formation
No. Experimental 

cocrystal formation
Compound 1 Compound 2 P Prediction  

cocrystal 
formation

1 0 2,4,6-Trinitrotoluene 2-Hydroxybenzoic acid 0.077 0
2 0 2,4,6-Trinitrotoluene Benzoic acid 0.024 0
3 0 2,4-Dinitrotoluene 2-Hydroxybenzoic acid 0.075 0
4 0 2,4-Dinitrotoluene Benzoic acid 0.023 0
5 0 2-Chlorobenzoic acid 2-Hydroxybenzoic acid 0.249 0
6 0 2-Chlorobenzoic acid Benzoic acid 0.089 0
7 0 2-Nitrophenol Benzoic acid 0.406 0
8 0 3-Hydroxybenzamide 2-Hydroxybenzoic acid 0.695 1
9 0 3-Hydroxybenzamide Benzoic acid 0.340 0
10 0 3-Methylheptanedioic acid Benzoic acid 0.005 0
11 0 4-Nitrophenol 2-Hydroxybenzoic acid 0.420 0
12 0 4-Nitrophenol Benzoic acid 0.180 0
13 0 4-Nitrophenol Cinnamic acid 0.121 0
14 0 Acetamide Benzoic acid 0.079 0
15 0 Benzamide 3-Hydroxybenzoic acid 0.644 1
16 0 Benzamide 4-Hydroxybenzoic acid 0.697 1
17 0 Benzamide Benzoic acid 0.137 0
18 0 Benzamide Ferulic acid 0.713 1
19 0 Benzyl Benzoic acid 0.021 0
20 0 Benzoic acid 2-Hydroxybenzoic acid 0.242 0
21 0 Borneol 2-Hydroxybenzoic acid 0.343 0
22 0 Cinnamic acid Benzoic acid 0.058 0
23 0 Curcumin 2-Hydroxybenzoic acid 0.271 0
24 0 Curcumin 4-Hydroxybenzoic acid 0.187 0
25 0 Curcumin Ferulic acid 0.642 1
26 0 Ethenzamide 3-Hydroxybenzoic acid 0.567 1
27 0 Indomethacin 1-Hydroxy-2-naphthoic acid 0.929 1
28 0 Indomethacin 2,5-Dihydroxybenzoic acid 0.445 0
29 0 Indomethacin 2-Hydroxybenzoic acid 0.396 0
30 0 Indomethacin 4-Hydroxybenzoic acid 0.305 0
31 0 Indomethacin Benzoic acid 0.185 0
32 0 Maleimide 2-Hydroxybenzoic acid 0.714 1
33 0 Maleimide 3-Hydroxybenzoic acid 0.931 1
34 0 Maleimide Benzoic acid 0.498 0
35 0 Malonic acid 2-Hydroxybenzoic acid 0.329 0
36 0 Malonic acid Benzoic acid 0.139 0
37 0 Menthol 2-Hydroxybenzoic acid 0.094 0
38 0 Naphthalene Benzoic acid 0.015 0
39 0 Oxalic acid Benzoic acid 0.192 0
40 0 Phenanthrene 2-Hydroxybenzoic acid 0.080 0
41 0 Phenanthrene Benzoic acid 0.025 0
42 0 Phenanthrene 3-Hydroxybenzoic acid 0.321 0
43 0 Phenanthrene Cinnamic acid 0.054 0
44 0 Phenylacetic acid Benzoic acid 0.046 0
45 0 Phthalimide Benzoic acid 0.544 1
46 0 Piracetam 2,6-Dihydroxybenzoic acid 0.946 1
47 0 Pregnenolone 2,5-Dihydroxybenzoic acid 0.185 0
48 0 Pregnenolone 2-Hydroxy-1-naphthoic acid 0.310 0
49 0 Pregnenolone 3-Hydroxy-2-naphthoic acid 0.310 0
50 0 Salicylamide 3-Hydroxybenzoic acid 0.807 1
51 0 Succinic acid Benzoic acid 0.163 0
52 0 Urea Benzoic acid 0.720 1
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53 1 1,2-Diaminobenzene Benzoic acid 0.878 1
54 1 1,4-Diaminobenzene Benzoic acid 0.839 1
55 1 1h-Imidazole 4-Hydroxybenzoic acid 0.513 1
56 1 2-(4-(Dimethylamino)phenylazo)

benzoic acid
2,6-Dihydroxybenzoic acid 0.984 1

57 1 2,3,5,6-Tetramethylpyrazine 4-Hydroxybenzoic acid 0.958 1
58 1 2,3,5,6-Tetramethylpyrazine Ferulic acid 0.968 1
59 1 2,4,6-Trinitrophenol Cinnamic acid 0.588 1
60 1 4-(1h-Pyrazol-1-ylmethyl)

benzamide
Benzoic acid 0.134 0

61 1 4-(Pyridin-4-yl)pyridine 1-oxide 4-Hydroxycinnamic acid 0.981 1
62 1 4,4'-Bipyridine 2-Hydroxybenzoic acid 0.975 1
63 1 4,4'-Bipyridine 4-Hydroxybenzoic acid 0.996 1
64 1 4,4'-Bipyridine 6-Hydroxy-2-naphthoic acid 0.999 1
65 1 4-Amino-n-(4,6-dimethylpyrimidin) 2,4-Dihydroxybenzoic acid 0.995 1
66 1 4-Amino-n-(4,6-dimethylpyrimidin) 3-Hydroxy-2-naphthoic acid 1.000 1
67 1 4-Hydroxybenzamide 2-Hydroxybenzoic acid 0.586 1
68 1 4-Phenylpyridine 3-Hydroxybenzoic acid 0.819 1
69 1 4-Phenylpyridine 4-Hydroxybenzoic acid 0.853 1
70 1 Acetamiprid 4-Hydroxybenzoic acid 1.000 1
71 1 Acridine 3-Hydroxybenzoic acid 0.962 1
72 1 Acridine 4-Hydroxy-3-methoxybenzoic 0.995 1
73 1 Adenine 2-Hydroxybenzoic acid 0.973 1
74 1 Agomelatine Benzoic acid 0.025 0
75 1 Benzamide 2,4-Dihydroxybenzoic acid 0.733 1
76 1 Benzamide 2,5-Dihydroxybenzoic acid 0.761 1
77 1 Benzamide 2,6-Dihydroxybenzoic acid 0.536 1
78 1 Benzamide 2-Hydroxybenzoic acid 0.297 0
79 1 Benzamide 3,5-Dihydroxybenzoic acid 0.838 1
80 1 Benzamide 3,4-Dihydroxybenzoic acid 0.903 1
81 1 Benzotriazole 4-Hydroxybenzoic acid 0.960 1
82 1 Caffeine 1-Hydroxy-2-naphthoic acid 1.000 1
83 1 Caffeine 2,3-Dihydroxybenzoic acid 1.000 1
84 1 Caffeine 2,4-Dihydroxybenzoic acid 1.000 1
85 1 Caffeine 2,5-Dihydroxybenzoic acid 1.000 1
86 1 Caffeine 2-Hydroxy-1-naphthoic acid 1.000 1
87 1 Caffeine 3,4,5-Trihydroxybenzoic acid 1.000 1
88 1 Caffeine 3,5-Dihydroxybenzoic acid 1.000 1
89 1 Caffeine 3-Hydroxy-2-naphthoic acid 1.000 1
90 1 Caffeine 4-Hydroxybenzoic acid 1.000 1
91 1 Caffeine 6-Hydroxy-2-naphthoic acid 1.000 1
92 1 Caffeine Benzoic acid 1.000 1
93 1 Carbamazepine 2-Hydroxybenzoic acid 0.858 1
94 1 Carbamazepine Cinnamic acid 0.789 1
95 1 Chlorzoxazone 2,4-Dihydroxybenzoic acid 0.996 1
96 1 Chlorzoxazone 4-Hydroxybenzoic acid 0.994 1
97 1 Danazol 4-Hydroxy-3-methoxybenzoic 0.689 1
98 1 Deferiprone 2,5-Dihydroxybenzoic acid 1.000 1
99 1 Deferiprone 4-Hydroxybenzoic acid 1.000 1
100 1 Didanosine 2-Hydroxybenzoic acid 1.000 1
101 1 Epoxiconazole 4-Hydroxybenzoic acid 0.790 1
102 1 Ethenzamide 2,4-Dihydroxybenzoic acid 0.724 1
103 1 Ethenzamide 2,5-Dihydroxybenzoic acid 0.754 1

Table 1: Continued
No. Experimental 

cocrystal formation
Compound 1 Compound 2 P Prediction  

cocrystal 
formation
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104 1 Ethenzamide 2,6-Dihydroxybenzoic acid 0.526 1
105 1 Ethenzamide 2-Hydroxybenzoic acid 0.356 0
106 1 Ethenzamide 3,4-Dihydroxybenzoic acid 0.899 1
107 1 Ethenzamide 3,5-Dihydroxybenzoic acid 0.832 1
108 1 Ethenzamide 4-Hydroxy-3-methoxybenzoic 0.906 1
109 1 Ethenzamide 4-Hydroxybenzoic acid 0.626 1
110 1 Ethenzamide Benzoic acid 0.161 0
111 1 Ethenzamide Ferulic acid 0.893 1
112 1 Etodolac 2-Hydroxybenzoic acid 0.314 0
113 1 Etodolac Ferulic acid 0.782 1
114 1 Etofylline Benzoic acid 0.999 1
115 1 Ferulic acid 2-Hydroxybenzoic acid 0.669 1
116 1 Fluconazole 2-Hydroxybenzoic acid 0.952 1
117 1 Flucytosine Benzoic acid 1.000 1
118 1 Gabapentin 1-Hydroxy-2-naphthoic acid 0.981 1
119 1 Gabapentin 2-Hydroxybenzoic acid 0.918 1
120 1 Gabapentin 3-Hydroxybenzoic acid 0.741 1
121 1 Gabapentin 4-Hydroxybenzoic acid 0.790 1
122 1 Iloperidone 2,3-Dihydroxybenzoic acid 0.972 1
123 1 Iloperidone 3,5-Dihydroxybenzoic acid 0.988 1
124 1 Iloperidone 3-Hydroxybenzoic acid 0.958 1
125 1 Imazamox 4-Hydroxybenzoic acid 1.000 1
126 1 Imazethapyr 4-Hydroxybenzoic acid 1.000 1
127 1 Isoniazid 3,4,5-Trihydroxybenzoic acid 1.000 1
128 1 Isoniazid 3,5-Dihydroxybenzoic acid 1.000 1
129 1 Isoniazid 3-Hydroxybenzoic acid 0.999 1
130 1 Isoniazid 4-Hydroxy-3-methoxybenzoic 1.000 1
131 1 Isoniazid Caffeic acid 1.000 1
132 1 Isoniazid Ferulic acid 1.000 1
133 1 Isoniazid 2,3-Dihydroxybenzoic acid 1.000 1
134 1 Isonicotinamide 2-Hydroxybenzoic acid 0.909 1
135 1 Isonicotinamide Benzoic acid 0.821 1
136 1 Isonicotinonitrile 2,5-Dihydroxybenzoic acid 0.906 1
137 1 Lornoxicam 2-Hydroxybenzoic acid 1.000 1
138 1 Maleimide 2,4-Dihydroxybenzoic acid 0.954 1
139 1 Maleimide 3,4,5-Trihydroxybenzoic acid 0.981 1
140 1 Maleimide 3,4-Dihydroxybenzoic acid 0.983 1
141 1 Maleimide 3,5-Dihydroxybenzoic acid 0.967 1
142 1 Maleimide 4-Hydroxybenzoic acid 0.945 1
143 1 Meloxicam 1-Hydroxy-2-naphthoic acid 1.000 1
144 1 Meloxicam 2,5-Dihydroxybenzoic acid 1.000 1
145 1 Meloxicam 2-Hydroxybenzoic acid 1.000 1
146 1 Meloxicam 4-Hydroxybenzoic acid 1.000 1
147 1 Meloxicam Benzoic acid 1.000 1
148 1 Metronidazole 3,4,5-Trihydroxybenzoic acid 0.998 1
149 1 n,n′-Diacetylpiperazine 2-Hydroxybenzoic acid 0.984 1
150 1 Nevirapine 3,4,5-Trihydroxybenzoic acid 1.000 1
151 1 Nevirapine 4-Hydroxybenzoic acid 0.998 1
152 1 Nevirapine Benzoic acid 0.992 1
153 1 Nevirapine Ferulic acid 1.000 1
154 1 Nicotinamide 2,5-Dihydroxybenzoic acid 0.973 1
155 1 Nicotinamide 2-Hydroxybenzoic acid 0.909 1
156 1 Nicotinamide 3-Hydroxy-2-naphthoic acid 0.972 1

Table 1: Continued
No. Experimental 

cocrystal formation
Compound 1 Compound 2 P Prediction  

cocrystal 
formation
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157 1 Nicotinamide 3-Hydroxybenzoic acid 0.953 1
158 1 Nicotinamide 4-Hydroxybenzoic acid 0.963 1
159 1 Nicotinamide 4-Hydroxycinnamic acid 0.966 1
160 1 Nicotinamide Sinapic acid 0.982 1
161 1 Nicotinamide 2,6-Dihydroxybenzoic acid 0.928 1
162 1 Nicotinamide 3,4-Dihydroxybenzoic acid 0.990 1
163 1 Nicotinamide 3,5-Dihydroxybenzoic acid 0.983 1
164 1 Nicotinamide Ferulic acid 0.965 1
165 1 Paliperidone 4-Hydroxybenzoic acid 1.000 1
166 1 Paliperidone 4-Hydroxybenzoic acid 1.000 1
167 1 Pentoxifylline 3,4,5-Trihydroxybenzoic acid 1.000 1
168 1 Phenazine 2,6-Dihydroxybenzoic acid 0.995 1
169 1 Piperazine 2-Hydroxybenzoic acid 0.985 1
170 1 Piperazine-2,5-dione 3,5-Dihydroxybenzoic acid 1.000 1
171 1 Piracetam 2,5-Dihydroxybenzoic acid 0.992 1
172 1 Piracetam 3-Hydroxybenzoic acid 0.982 1
173 1 Piracetam 4-Hydroxybenzoic acid 0.986 1
174 1 Piroxicam 2,5-Dihydroxybenzoic acid 1.000 1
175 1 Piroxicam 2-Hydroxybenzoic acid 1.000 1
176 1 Piroxicam 4-Hydroxybenzoic acid 1.000 1
177 1 Piroxicam Enzoic acid 1.000 1
178 1 Progesterone 2-Hydroxy-1-naphthoic acid 0.405 0
179 1 Prulifloxacin 2-Hydroxybenzoic acid 1.000 1
180 1 Pyraclostrobin 4-Hydroxybenzoic acid 0.981 1
181 1 Pyrazinamide 1-Hydroxy-2-naphthoic acid 0.996 1
182 1 Pyrazinamide 3,4-Dihydroxybenzoic acid 0.998 1
183 1 Pyrazinamide 3-Hydroxybenzoic acid 0.992 1
184 1 Pyrazinamide 4-Hydroxy-3-methoxybenzoi 0.997 1
185 1 Pyrazinamide 4-Hydroxybenzoic acid 0.994 1
186 1 Salicylamide 2,4-Dihydroxybenzoic acid 0.885 1
187 1 Salicylamide 2,5-Dihydroxybenzoic acid 0.900 1
188 1 Salicylamide 2,6-Dihydroxybenzoic acid 0.765 1
189 1 Salicylamide 3,4-Dihydroxybenzoic acid 0.963 1
190 1 Salicylamide 3,5-Dihydroxybenzoic acid 0.936 1
191 1 Salicylamide 4-Hydroxybenzoic acid 0.842 1
192 1 Salicylamide Benzoic acid 0.280 0
193 1 Salicylamide Ferulic acid 0.875 1
194 1 Stanozolol 6-Hydroxy-2-naphthoic acid 0.332 0
195 1 Tadalafil 2-Hydroxybenzoic acid 1.000 1
196 1 Theophylline 1-Hydroxy-2-naphthoic acid 1.000 1
197 1 Theophylline 2-Hydroxy-1-naphthoic acid 1.000 1
198 1 Theophylline 2-Hydroxybenzoic acid 0.999 1
199 1 Theophylline 3-Hydroxy-2-naphthoic acid 1.000 1
200 1 Trimethoprim Benzoic acid 0.854 1
201 1 Urea 2,4-Dihydroxybenzoic acid 0.927 1
202 1 Urea 2,5-Dihydroxybenzoic acid 0.925 1
203 1 Urea 2,6-Dihydroxybenzoic acid 0.885 1
204 1 Urea 2-Hydroxybenzoic acid 0.896 1
205 1 Urea 3,5-Dihydroxybenzoic acid 0.913 1
206 1 Urea 3-Hydroxybenzoic acid 0.897 1
207 1 Urea 4-Hydroxybenzoic acid 0.918 1
208 1 Urea 3,4-Dihydroxybenzoic acid 0.954 1
209 1 Urea Ferulic acid 0.847 1
210 1 Voriconazole 4-Hydroxybenzoic acid 0.994 1

Table 1: Continued
No. Experimental 

cocrystal formation
Compound 1 Compound 2 P Prediction  

cocrystal 
formation
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Figure 1: A schematic representation of computational methods for the 
calculation of parameters and logistic regression for predicting cocrystal 
formation in this study

Table 2: Percentage of correct prediction of cocrystal formation between compounds 1 and 2 by Eq. (1) and leave-10-out 
cross-validation

Cocrystal formation Eq. (1) Leave-10-out cross-validation
True positive 94% (149 correct prediction from 158 total data) 92% (145 correct prediction from 158 total data)
True negative 75% (39 correct prediction from 52 total data) 73% (38 correct prediction from 52 total data)
Overall 90% (188 data from 210 total data) 87% (183 correct prediction from 210 total data)

computational methods for the calculation of parameters 
and logistic regression for predicting cocrystal formation 
in this study.

Results and Discussion

Based on the preliminary analysis, reported data of cocrystal 
formation between carboximide and carboxylic acid behave 
as outliers (17 data). Geometric disposition of hydroxyl 
functionality on benzoic acid that can drive the formation 
of cocrystals[33] is a possible reason to act as outliers, and 
structural parameters cannot estimate cocrystal formation. 
Therefore, remained data points (210 data) were applied 
to develop a model by sum and absolute difference of 
compounds 1 and 2’s descriptors, i.e., TPSA, NRB, and 

Abraham solvation parameters based, on binary logistic 
regression, in which the obtained model is:

P
e
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=

− − − + − − + +7 984 2 375 0 068 0 818 13 231 2 1 2 1 2. . . . . 66 5 458 3 855
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1
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+

.

. . . 00 818 13 236 5 458 3 855

6 104
1 2 1 2 1 2 1 2

1

. . . .

.

NRB NRB B B E E V V

AB

+ + + − + + +
− ++ − − − − + −AB S S A A AB AB2 1 2 1 2 1 22 287 1 628 2 740. . .

(1)
where P is the probability of  binary responses (class 0: 
P<0.5 or 1 P>0.5) based on the true positive/true negative 
cocrystal formation and e is Euler’s number (e=2.718). 
In addition, probability values (P-value) associated 
with each descriptor were less than 0.1. The model 
[Eq. (1)] estimated 94% and 75% of  true positive and 
true negative cocrystal formation in the correct group, 
respectively [Table 1]. Leave-many-out cross-validation 
was performed to evaluate the prediction capability 
of  the model, and the results were listed in Table 2. 
No significant difference in accuracy after leave-10-
out cross-validation confirms the prediction capability 
of  the developed model. Besides, receiver-operating 
characteristic (ROC) curves were used to evaluate the 
classification abilities of  the logistic-regression-based 
models. ROC of  Eq. (1) was illustrated in Figure 2, 
and the area under the curve is 0.943. It confirms the 
validity of  the developed model for predicting cocrystal 
formation between the two compounds.

Evaluation of  the selected parameters shows that the 
hydrogen bonding parameters have the most significant 
effect on cocrystal formation. Feature selection with a 
forward method using SPSS software indicated that the 
most crucial parameter for the classification of  data is the 
sum of  the hydrogen-bond basicity (B1+B2) and volume 
of  compounds (V1–V2). With these two parameters [Eq. 
(2)], 60% and 95% of  true positive and true negative 
cocrystal formations are classified in the correct group, 
respectively:

P
e

e

B B V V

B B V
=

+

− + + − −

− + + −

4 845 5 629 0 450

4 845 5 629 0 450

1 2 1 2

1 21

. . .

. . . 11 2−V (2)

Based on the developed model, high numerical values 
correspond to hydrogen bond donor of drug and coformer 
and similar volume between the two compounds gives a 
P higher than 0.5, which indicates cocrystal formation. 
Further analyses showed that all of  the true positive 
cocrystal formation data between compounds 1 and 2 
have B1+B2>1 [Figure 3]. In contrast, this value for No 
cocrystal formation data is 66% and only three data have 
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Figure 3: Cocrystal formation vs. B1+B2 of compounds 1 and 2. All of the 
true positive cocrystal formation between compounds 1 and 2 has B1+B2>1, 
whereas this value for no cocrystal formation data is 66% and only three 
data have B1+B2>2

Figure 4: Structure of caffeine. It has no hydrogen bond donor functional 
group (A=0); however, they could form cocrystal with various coformers

Figure 2: Receiver-operating characteristic (ROC) curve of the model (Eq. 
1) for predicting cocrystal formation

B1+B2>2. The cocrystal can be formed using non-covalent 
interaction, which is often hydrogen bond.[34,35] It has a 
critical effect on the cocrystal formation between the two 
compounds. Typical hydrogen bonds utilized in crystal 
engineering are bonds among carboxylic acids, amides, and 
N-heterocyclic hydrogen-bond acceptor with carboxylic
acid.[36] According to the studied parameters, A and B
belong to the hydrogen bonding group of  compounds,
and they represent hydrogen bonding donor and acceptor

groups, respectively. These results indicate that although 
“A” could have a proper role in cocrystal formation 
based on the obtained model [Eq. (1)], “B” in comparison 
with “A” is a more critical parameter affecting cocrystal 
formation. Some compounds with A=0 such as caffeine 
[Figure 4] which do not have hydrogen bond donor 
groups can form cocrystal with some of  the coformers. 
Moreover, these results confirm the previous findings, in 
which supramolecular heterosynthons (i.e., non-covalent 
bonds between different functional groups composed of 
a hydrogen bond acceptor and a hydrogen bond donor 
group such as carboxylic acid–aromatic nitrogen) favor for 
cocrystal formation than supramolecular homosynthon.[37] 
Although the developed model [(Eq. (2)] with only two 
parameters predicts cocrystal formation with 86% accuracy, 
nevertheless, the prediction for No cocrystal formation is 
not acceptable (60%) because it is only 10% close to the 
chance probability value (50%). Other parameters were 
used to improve the accuracy values of  true positive 
and true negative cocrystal formation to 94% and 75%, 
respectively [(Eq. (1)]. Based on the mentioned descriptors, 
the model did not have satisfying results unless the sum 
and absolute difference of  another descriptor (sum and 
absolute difference of A×B) dealt with acidity and basicity 
hydrogen bond descriptors of  compounds included in the 
model yielded much better correlations. The obtained 
results verify the importance of  hydrogen bonding in 
cocrystal formation. Similar outcomes to including A×B 
in developing quantitative structure–property relationship 
(QSPR) models have been reported by Abraham and 
Acree[29] for the solubility prediction of  solutes in octanol 
and water by Abraham solvation parameters.

The results of this study approve the capability of Abraham 
solvation parameters for predicting cocrystal formation. 
These parameters have been extensively used in QSPR 
models to predict physicochemical and pharmacokinetic 
properties.[38-41] Moreover, the established models based on 
logistic regression using Abraham solvation parameters 
as structural descriptors have been applied to estimate 
Biopharmaceutics Drug Disposition Classification System 
(BDDCS)[42] and the oral bioavailability correlation between 
humans and preclinical animals.[43]

In this study, for the first time, Abraham solvation 
parameters and some other simple descriptors were used 
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for the prediction of  non-covalent interaction between 
API and coformer, i.e., cocrystal formation. The results 
indicate the importance of related parameters to hydrogen 
binding basicity and volume of API and conformer, which 
is the most common interaction in cocrystal formation. 
Mechanistic interpretation for the developed model means 
that it is potentially helpful in the regulatory context.[26]

The limitation of this study is a relatively small data set (only 
52 NO cocrystal formation data). The applied descriptors 
and the developed model on a large uniform data set 
composed of  true positive and true negative cocrystal 
formation could improve the prediction accuracy of the 
model. Other structural descriptors, i.e., intermolecular 
descriptors and 1D, 2D, and even 3D descriptors, could have 
more positive effects on the accuracy of cocrystal formation 
prediction between drug and coformer. However, the 
developed models with them are complex, and mechanistic 
interpretation sometimes is not possible.

Conclusion

Prediction of cocrystal formation of a drug with different 
coformers helps to design the cocrystal in drug development, 
and it could speed up the process of cocrystal formation 
studies. Hydrogen bonding parameters and the molecules’ 
volume are the most important in cocrystal formation 
between the two compounds. The molecules with similar 
volumes and more functional groups involved in hydrogen 
bonding are positive structural chemical factors in cocrystal 
formation. However, other parameters are necessary to 
propose an applicable model with good accuracy to predict 
cocrystal formation. The results of this study can help the 
mechanistic evaluation of cocrystal formation and cocrystal 
screening without time-consuming and costly experiment 
methods with only computational structural descriptors. 
However, finalization of cocrystal formation requires other 
standard methods such as DSC, X-ray diffractions, and 
so on.
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