
© 2019 Journal of Reports in Pharmaceutical Sciences | Published by Wolters Kluwer - Medknow 115

Introduction
An increase in the number of type 2 
diabetes cases has been attributed, majorly 
to a sedentary lifestyle. Changes in insulin 
sensitivity as well as insulin levels are the 
two major hallmarks of type 2 diabetes and 
are responsible for glucose intolerance and 
increase in blood glucose level. Various studies 
conducted in this realm have revealed a direct 
connection of increased pro‑inflammatory 
cytokine concentration in the circulation with 
an increase in peripheral insulin resistance.[1‑3] 
Additionally, activation of a specific stimulus, 
such as endoplasmic reticulum stress by 
adipocyte hypertrophy or rise in plasma levels 
of free fatty acids (FFAs), also contributes 
toward peripheral insulin resistance.[4,5] At 
the molecular level, these stimuli trigger 
various serine/threonine protein kinases, 
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Abstract
Background: With an aim to design a validated two‑dimensional quantitative structure–activity 
relationship (2D QSAR) model, a probe was executed on a series of reported c‑Jun NH2‑terminal 
kinase‑1 (JNK1) inhibitors, exhibiting selectivity toward JNKs (and not other members of MAPK 
family). Objective: The present work focused on obtaining valuable insights from the structural 
architecture of the selected compounds and their effects on JNK1 inhibitory activity. The present 
work deciphers the importance of descriptive variables, namely Verloop L (Subst. 1), Bond Dipole 
Moment (Subst. 2), LogP (Subst. 1), Balaban Topological index (Subst. 1), and  VAMP Total 
Dipole (whole molecule), in molecules possessing JNK1 inhibitory profile. Results: These 
explanatory variables, obtained after iteratively reducing the data, did not only provide us with 
the substantial evidence pertaining to the dependence of bioactivity on the structural features of 
molecules, but also suggested the measures to optimize the selected compounds so as to obtain 
potent JNK1 inhibitors with good selectivity profile. Based on these distinct descriptors, exhibiting 
no apparent intercorrelation and manifesting good correlation with biological activity, a 2D QSAR 
model was generated. Conclusion: Robustness of the developed model was evaluated by performing 
multiple linear regression, partial least square, and artificial neural network studies. The reliability 
and predictive ability of the developed model was ascertained through the values of standard 
statistical parameters, such as s = 0.38, F = 97.22, r = 0.95, r2 = 0.90, and r2cv = 0.88, for the 
training set compounds. The generated model was validated through the test set compounds, as well 
as by leave one out method.
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including nuclear factor‑kB kinase inhibitor 
and the c‑Jun NH2‑terminal kinase (JNK). 
Both of these kinases are known to target the 
insulin receptor substrate (IRS)‑1, for serine 
phosphorylation. Phosphorylation of IRS‑1 
prevents it to reach and bind to the insulin 
receptor that, in turn, prevents the activation 
of insulin‑signaling cascade.[6,7]

JNKs constitute the subfamily of 
mitogen‑activated protein kinases and 
belong to the class of serine/threonine 
kinases. These are primarily triggered upon 
their exposure to environmental stimuli, 
such as ultraviolet irradiation and certain 
other stimuli including cytokines and 
osmotic shock.[8‑12] JNKs perform their 
functions by phosphorylating the N‑terminal 
transactivation domain of c‑Jun that results 
in the activation of c‑Jun‑dependent 
transcriptional processes. JNK1/SAPKb, 
JNK2/SAPKa, and JNK3/SAPKg are the 
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three genes that are known to encode the JNK family. Out 
of these three isoforms, JNK1 and JNK2 are found to be 
expressed ubiquitously, whereas JNK3 is primarily localized 
in the brain and at somewhat lower levels in the heart and 
testes.[8,11,13,14] A number of studies, performed on the JNK1 
gene knock‑out mouse models, showed a drastic reduction 
in adiposity as well as a discernible increase in insulin 
sensitivity.[15] Therefore, the crucial role of JNK in linking 
inflammatory responses with metabolic disorder, through 
the modulation of ER stress and IRS, gives the researchers 
a promising opportunity to design the inhibitors that can 
help combat type 2 diabetes.[16] According to a recent study, 
an orally administered small molecule pan‑JNK inhibitor 
had a discernible impact when compared with rosiglitazone 
and rimonabant on insulin sensitization, glucose levels, and 
adiposity with negligible effect on liver enzymes.[17]

JNKs represent a paradigm of enzymes that share an 
exceptionally high degree of homology. They are known 
to modulate a wide array of cellular functions. Therefore, 
complete inhibition of the JNK activity by a nonselective 
inhibitor will have a profound effect on multiple processes 
including the ones not involved in the pathophysiology of 
any disease. This can probably lead to undesired side effects 
that indeed will be more pronounced in case of chronic 
conditions. The lack of selectivity in JNK inhibitors is an 
issue of great concern and must be sincerely addressed to 
avoid undesirable consequences. Therefore, prompted by 
the dearth of selective JNK1 inhibitors and adverse effects 
posed by the inhibitors developed so far, multiple linear 
regression (MLR), partial least square (PLS), and artificial 
neural network (ANN) methods, which are the in silico 
tools of quantitative structure–activity relationship (QSAR), 
have been effectively employed to assess the dependence 
of JNK1 inhibitory activity on the structural design of the 
selected molecules. This study was conducted to deduce 
the significant structural modifications that can be worked 
out to design the optimized JNK1 inhibitors, possessing 
excellent potency as well as enhanced selectivity profile.

Materials and Methods
Dataset for analysis

The present work employed IC50 data from a series of 77 
di‑substituted thiophene derivatives,[18,19] showing good 
JNK1 inhibitory activity. Usually, reported biological 
activities are skewed and therefore, to eliminate this 
problem, values of the biological activity were converted 
into their respective pIC50 by using the following formula:

pIC50= −logIC50

Sketching of the structures of selected di‑substituted 
thiophene derivatives, using Chemdraw Ultra 8.0 software 
((www.perkinelmer.com), USA),[20] marked the onset 
of QSAR model development. The sketched chemical 
structures were then imported to the new data sheet of 
TSAR 3.3 software (www.accelrys.com).[21]

Defining substituents

In total, two major substituents (R1 and R2), around an 
N‑methyl acetamide moiety (common to all molecules), 
were defined through an in‑built option called “define 
substituents,” available in the TSAR worksheet’s toolbar 
(version 3.3; Accelrys Inc., Oxford, England) as depicted 
in Figure 1. These positions were selected on the basis 
of impact that these substituents manifested through a 
discernible change in JNK1 inhibitory activity.

Data set preparation

The present study employed TSAR Version 3.3 to 
develop the model. Structures of the selected set of 
molecules after their import to the TSAR worksheet 
were converted into high‑quality 3D structures through 
an in‑built option “Corina make 3D.”[22] The Cosmic 
option, present in TSAR, determined the total energy 
which is the sum total of Van der Waal, coulombic, 
bond length, bond angle, and torsion angle terms, for an 
individual set of atoms.[23] Inclusion of valence electrons 
present in the molecular atoms was also made in these 
calculations. The calculations were terminated as soon 
as the energy gradient became smaller than 1 × 10−5 and 
1 × 10−10 kcal/mol.

Descriptor calculation

After optimizing the energy of all the imported structures, 
TSAR sheet containing nearly 200 classical descriptors 
from structural, electronic, geometrical, and hydrophobic 
classes was generated through calculating their numerical 
values. For calculation of the aforementioned descriptors, 
whole molecules and their substituents were selected and 
different types of descriptors, such as KierChi, KierChiV, 
molecular surface area, topological indices, logP, and 
electronic descriptors, were calculated. Another feature 
called Vamp, which is a molecular orbital package of 
semi‑empirical type in TSAR 3.3, was employed to estimate 
the electrostatic properties, such as electronic energy, total 
energy, nuclear repulsion energy, atomic charge, accessible 

Figure 1: Substituents defined around N-methyl acetamide moiety
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surface area, mean polarizability, total dipole, heat of 
formation, polarizability, and dipole components.

Data reduction

Data redundancy, which is the major cause of deceptive 
results, is mainly observed when the data are large and 
lead to ambiguity in choosing the relevant descriptors 
that actually decipher the enigma, pertaining to the 
dependence of bioactivity on the structural architecture 
of the molecules. Therefore, correlation matrix was used 
to curtail the data to obtain relevant physicochemical 
parameters exhibiting maximum correlation with the 
biological activity and no intercorrelation. In this step, 
a correlation matrix was generated through an in‑built 
option, and the descriptors having intercorrelation were 
evaluated. Among the intercorrelated descriptors, the one 
exhibiting higher correlation with the biological activity 
was retained, whereas the other one was deleted from the 
sheet. The descriptors that were left after data reduction 
constituted the final model and were employed to decode 
the information, encoded by the structures of the molecules 
under study.

Statistical analysis

The quantification of the relationship between the biological 
activity and the descriptors that were obtained after data 
reduction was carried out through the implementation of 
MLR, PLS, and ANN approaches, available in TSAR 3.3. 
The criteria “F‑to‑Enter” and “F‑to‑leave” particularly 
explain the significance and insignificance of the role of a 
variable in the obtained regression equation, respectively, 
for adding to the equation and removing from the equation. 
In TSAR Version 3.3, the value for F‑to‑enter and 
F‑to‑leave, by default, is fixed to 4.[24] The evaluation of 
predictive power of the proposed model was performed 
through a number of statistical parameters, such as 
conventional regression coefficient (r), squared regression 
coefficient (r2), cross‑validation test (r2cv), standard 
deviation (s), and Fischer’s ratio (F).

Multiple linear regression analysis

MLR involves the calculation of an equation that describes 
the relation between the biological activity data (dependent 
Y variable) and the structural descriptors (independent X 
variable). This method involves fitting of the data, extracted 
from the dependent as well as independent variables to the 
derived regression equations.[25]

Partial least square

PLS analysis technique also involves the calculation of the 
equations explaining the relationship between a dependent 
variable and a set of descriptors (independent variables). 
It is considered as a desired tool for surmounting the 
difficulties common with MLR, owing to redundancy 
resulted due to a large pool of data or high intercorrelations 
among descriptors.[26]

Artificial neural network approach

ANN is typically a software‑based program. In ANN 
technique, neurons (processing elements) are connected 
to each other through links within a structure, which 
resembles net and form “layers.” The features of the ANN 
are suitable for processing of the data, especially in the 
cases where the functional relationship between the input 
and the output is not previously defined or is of nonlinear 
type.

Model validation

Leave‑one‑out method was employed for the 
cross‑validation purpose and involved the deletion of one 
descriptor, at a time, and analyzing the data set values for 
the obtained model based on the remaining descriptors. The 
values of r2 and cross‑validated r2, with least prediction 
error, were chosen. Additionally, the test set compounds, not 
included in building of the model, were used to determine 
the predictability of the developed QSAR model.[27]

Result and Discussion
For the selected set of compounds, approximately 
200 descriptors belonging to distinct classes, such as 
the electronic, shape, lipophilic, and refractivity, were 
determined numerically. The data set was reduced to 
eliminate the chances of redundancy. Data reduction 
provided better understanding of the substitution pattern and 
how it accounts for the unique behavior of the molecules, 
against JNK1. Reducing the data, by deleting redundant and 
intercorrelated descriptive variables, led to the development 
of QSAR model that consisted of five descriptors, as 
depicted in Figure 2. After completion of the data reduction 
step, the selected compounds were partitioned into the 
training set and the test set Tables 1 and 2. The training 
set molecules were used to build the model, and their 
activity values were predicted through MLR, PLS, and 
ANN analyses. The test set molecules underwent the same 
fate as that of training set compounds, and their predicted 
values were employed as a validating tool for the obtained 
model. Plots between the predicted activity data and the 
experimental activity data were employed in evaluating the 

Figure 2: Correlation of the descriptors, used to build the quantitative 
structure–activity relationship model, with the substituents defined around 
a common nucleus
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predictive power of the developed model. These plots were 
also utilized to search for the presence of any outliers in 
the model. However, no such compound, deviating from 
the idealness and not fitting in the developed model, was 
found to exist in the selected series of molecules.[28]

The regression equation, obtained through the application 
of MLR technique on the training set compounds used to 
build the model, is as follows:

Y = 1.4216795‑X1‑0.24535894*X2‑0.18161716*X3‑2.004
7016*X4‑0.137721*X5‑6.5111089

where X1 = Verloop L (Substituent 1), X2 = Bond Dipole 
Moment (Subst. 2), X3 = LogP (Subst. 1), X4 = Balaban 
Topological index (Subst. 1), and X5 = VAMP Total 
Dipole (whole molecule).

As per the acceptable statistical standard criterion, a 
minimal value of 0.80 for r2 is essential for a statistically 
significant model.[29,30] Moreover, the developed model, with 
excellent r2 value of 0.97, yet again proved its statistical 
significance [Table 3].

In addition to MLR, robustness of the developed QSAR 
model was evaluated by PLS approach and the equation so 
obtained is as follows:

Y = 1.276677*X1‑0.26492366*X2‑0.23346859*X3‑2.4868
717*X4‑0.11788595*X5‑4.7390904

The experimental versus predicted activity plot is shown 
in Graphs 1 and 2, respectively. Intriguingly, regression 
values (R2) of both the plots were close enough that further 
validated the reliability of the developed model.[31]

Furthermore, not all relationships can be linear. Hence, to deal 
with nonlinear data, as well as to enrich our findings, the ANN 
approach was used. The neural trains were used to predict the 
activity data [Figures 3‑7]. The plot between the predicted and 
the original activity data is represented in Graph 3.

Even for the graph obtained through the neural approach, 
R2 values were found to be very close to those obtained 
from MLR and PLS methods. This further validated the 
reliability of the developed model.

The descriptors included in the final model were found 
to be of relevance, as reflected by their coefficient, 

Table 1: Representing experimental activity data and the 
predicted activity values of the training set compounds, 
obtained from multiple linear regression, partial least 

square, and artificial neural network methods
Name of the 
compound

−logIC50
(nm)

Predicted values
MLR PLS ANN

1 −1.14613 −0.6383 −0.66615 −0.93142
3 −1.23045 −1.09845 −1.09018 −1.34475
5 −1.32222 −1.02597 −1.0994 −1.25406
7 −1.90849 −1.86057 −1.9321 −2.12476
9 −0.95424 −0.58322 −0.46656 −0.59967
10 −0.69897 −1.02571 −0.95994 −0.90798
11 −0.60206 −0.28247 −0.25226 −0.10726
12 −0.60206 −0.73668 −0.75744 −0.72563
13 −0.90309 −0.67813 −0.71735 −0.65627
15 −0.47712 −0.49303 −0.51961 −0.32639
16 −0.47712 −0.48121 −0.52971 −0.29183
18 −0.77815 −0.81184 −0.87788 −0.83374
19 −1.49136 −1.23715 −1.36273 −1.5707
20 −0.30103 −0.67635 −0.77579 −0.55738
21 −1.04139 −0.81524 −0.88425 −0.88541
22 0 −0.5886 −0.54718 −0.55948
23 0 −0.50691 −0.48592 −0.37994
24 −0.8451 −0.89936 −0.8726 −0.76048
26 0 −0.35123 −0.25523 −0.29696
28 −0.60206 −0.80139 −0.88701 −0.43069
29 −0.8451 −0.54057 −0.61941 −0.10918
30 −0.30103 −0.52769 −0.57488 −0.19837
31 −3.25527 −3.04826 −3.10186 −3.08918
32 −2.8451 −2.40113 −2.56012 −2.43824
34 −2.66276 −2.66089 −2.5583 −2.83962
35 −3 −2.81136 −2.67794 −3.10171
36 −3.30103 −4.00967 −4.17952 −3.75619
37 −2.77815 −2.43522 −2.33602 −2.6481
38 −2.60206 −2.79888 −2.8047 −2.78733
40 −2.43136 −2.4773 −2.35853 −2.75302
41 −2.47712 −2.55874 −2.44048 −2.83191
42 −2.8451 −2.92203 −2.93966 −2.92192
43 −3.79934 −3.31448 −3.34463 −3.37084
45 −2.47712 −2.99681 −3.01148 −3.00529
46 −3.41497 −3.48361 −3.51152 −3.58599
48 −2.60206 −2.86457 −2.88905 −2.74429
50 −2.94939 −2.84571 −2.86909 −2.7322
51 −3.32222 −3.37338 −3.35582 −3.25522
53 −3.50515 −3.49821 −3.56918 −3.36268
56 −2.72428 −2.73036 −2.63731 −2.71428
57 −3.25527 −3.62323 −3.68245 −3.52836
59 −2.39794 −2.70808 −2.60183 −2.70823
61 −4.63949 −3.30429 −3.36551 −3.2928
62 −2.91908 −2.7656 −2.77818 −2.7589
65 −2.89763 −3.09412 −3.00602 −3.16571
66 −4.3784 −4.09285 −4.0554 −4.25882
67 −3.04139 −2.95589 −2.96411 −2.94121
69 −2.85126 −2.23194 −2.10801 −2.49101
70 −3.14613 −3.08234 −3.06178 −3.13868

Table 1: Contd...
Name of the 
compound

−logIC50
(nm)

Predicted values
MLR PLS ANN

71 −2.61278 −2.53291 −2.44241 −2.65939
72 −1.68124 −2.3376 −2.26953 −2.51079
73 −2.69897 −3.03147 −3.03564 −3.04202
74 −3.53148 −3.09095 −3.03329 −3.00224
75 −2.90309 −2.93155 −2.9423 −3.14016
76 −2.34242 −3.14267 −3.19094 −3.10916
MLR: Multiple linear regression; PLS: Partial least square; 
ANN: Artificial neural network

Contd...
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jackknife, t‑test, as well as covariance standard error 
values [Table 4]. Their significance was further estimated 
through observing the correlation of an individual 
descriptor with the bioactivity [Table 5]. Among the 
retrieved descriptors, Verloop L (Subst. 2) and Bond Dipole 
Moment (Subst. 2) manifested high correlation values of 
0.82 and −0.76, respectively. LogP (Subst. 1) displayed 
moderate correlation of −0.4 with the JNK1 inhibitory 
activity. However, Balaban Topological index (Subst. 1), 
as well as VAMP Total Dipole (whole molecule), exhibited 
low correlation with the biological activity, but their 
removal from the final model digressed the developed 
model from idealness (s‑value changed from 0.38 to 0.79) 
which was considered as unacceptable and therefore, these 
descriptors were retained in the final model.

Verloop parameters,[32‑34] in general, constitute a group 
of multidimensional steric descriptors. The VerloopL 
parameters define the influence of the length of the 
substituted groups in a molecule under study. As this 
explanatory variable (VerloopL) is positively correlated 

with the JNK1 inhibitory activity, increase in the length 
of the substituent on R2 position will probably have a 
positive impact on the inhibitory activity. In general, 
steric hindrance, owing to the presence of bulky groups, is 
considered as unfavorable for a molecule to approach and 
bind with the target receptor. However, at the same time, 
for a molecule to adequately fit into the binding domain 
and properly align with the binding site sequence, an 
optimal amount of bulk, as well as branching, helps it to 
orient in a better way and thus, augments the likelihood of 
adequate bonding interactions, between a molecule and a 
receptor.

Table 2: Representing experimental activity data of the 
test set compounds and the predicted activity values, 

obtained through multiple linear regression, partial least 
square, and artificial neural network methods

Name of the 
compound

−logIC50
(nm)

Predicted values
MLR PLS ANN

2 −1.20412 −0.82289 −0.87781 −0.91669
4 −1.14613 −0.79666 −0.82315 −0.87549
6 −2.25042 −1.24876 −1.32691 −1.60956
8 −1.39794 −1.0697 −0.97739 −1.49466
14 −0.90309 −0.35844 −0.28025 −0.44879
17 −0.30103 −0.95633 −0.99739 −1.20789
25 −1.11394 −0.37936 −0.38896 −0.04864
27 −1 −0.01137 0.039817 −0.00149
33 −3.81954 −2.69198 −2.63709 −3.009
39 −3.8451 −2.84804 −2.74428 −3.15235
47 −3.36173 −1.59088 −1.80919 −0.55715
49 −3.32222 −2.42784 −2.52754 −2.37368
52 −3.80618 −2.75367 −2.70432 −2.70847
54 −4.42975 −2.81469 −2.86001 −2.67359
55 −3.50515 −3.02128 −2.96926 −2.92813
58 −4.38202 −3.11803 −3.04371 −3.04314
60 −4.48144 −3.12905 −3.18888 −2.94669
64 −3.53148 −2.52193 −2.47864 −2.61368
68 −3.23045 −2.78865 −2.74748 −2.83919
77 −4.36922 −3.64787 −3.58308 −3.81895
MLR: Multiple linear regression; PLS: Partial least square; 
ANN: Artificial neural network

Table 3: Representing the values of standard parameters 
employed to evaluate predictability of the developed 

quantitative structure‑activity relationship model
r r2 r2CV S F
0.95 0.90 0.88 0.38 97.22
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Graph 1: Plot between predicted and experimental biological activity values 
obtained through multiple linear regression approach
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Graph 2: Plot between predicted and experimental biological activity values 
obtained through partial least square approach
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Figure 3: Neural plot of Verloop L (Substituent 2) parameter with the 
biological activity. As this descriptive variable is positively correlated with 
the biological activity, the output value is increasing with the increase in 
the value of this descriptive variable

Parameter logP is known to play a primary role in 
biochemical cascades and impacts the ADME properties 
of a drug and thereby, its bioavailability showed negative 
correlation, at substituent R1, with the biological activity. 
Thus, a substituent that reduces the hydrophobicity will 
result in better fit of the molecule.

Bond Dipole Moment (Subst. 2) utilizes the concept of 
electric dipole moment to compute the polarity of a chemical 
bond in any molecule.[35] Furthermore, as this parameter is 
found to be negatively correlated with the inhibitory activity, 
improvement in JNK1 inhibitory activity is expected by 
decreasing the polar nature of substituent at this position.

Balaban Topological Index, also known as index “J,” 
typically describes the connectivity among atoms where 
atoms are considered as vertices and bonds between them 

as edges.[36] As this variable is negatively correlating with 
the biological activity at position R1, replacement with 
less steric substituent may result in augmented inhibitory 
activity.

Finally, total dipole parameter, calculated through 
semi‑empirical package “VAMP” in TSAR 3.3, was found 
to negatively correlate with the biological activity. Majorly, 
this parameter explains the molecular charge distribution, 
in three dimensions of the molecule. Hence, it can be 
deduced that, by decreasing the overall electronegativity of 
the molecule, inhibitory activity can be improved.

Due to minor differences in the structural skeleton of the 
molecules under study, the significance of these descriptive 
variables can be easily understood by observing their computed 
values, for the active and the inactive molecules. For an instance, 
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Figure 4: Neural plot of Bond Dipole Moment (Substituent 2) parameter with 
biological activity. As this descriptive variable is negatively correlated with 
the biological activity, the output value is decreasing with the increase in 
the value of this descriptive variable

Table 4: Representing the values of various parameters employed to determine the relevance of the descriptors in the 
developed model

Descriptors Coefficienta Jackknifeb Covariance SEc td t, Pe

Verloop L (Substituent 2) 1.421 0.17755 0.17681 8.0409 1.6547e, 010
Bond dipole moment (Subst. 2) −0.24536 0.051168 0.046011 −5.3326 2.4495e, 006
LogP (Subst. 1) −0.18162 0.063219 0.72628 −2.5007 0.01579
Balaban Topological Index (Subst. 1) −2.0047 0.663 0.45148 −4.4403 5.1103e, 005
VAMP total dipole (whole molecule) −0.13772 0.03791 0.03885 −3.545 0.00087483
aThe regression coefficient for individual variable in the QSAR equations. bAn estimate of the standard error on individual regression 
coefficient obtained from a jackknife method on the final regression model, cAn estimate of the standard error on individual regression 
coefficient derived from covariance matrix, dMeasure of the significance of each variable included in the final model, eStatistical 
significance for t‑test values. SE: Standard error; QSAR: Quantitative structure‑activity relationship

Table 5: Correlation matrix describing correlation between the descriptive variables and the experimental biological 
activity

Variables −logIC50 Verloop L 
(Substituent  
2)

Bond dipole 
moment (Subst. 2)

LogP 
(Subst. 1)

Balaban Topological 
Index (Subst. 1)

VAMP total 
dipole (whole 

molecule)
−logIC50 1 0.82988 −0.76088 −0.40176 −0.14849 0.090375
Verloop L (Subst. 2) 0.82988 1 −0.69038 −0.36035 −0.021717 0.21511
Bond dipole moment (Subst. 2) −0.76088 −0.69038 1 0.22672 −0.027491 −0.40024
LogP (Subst. 1) −0.40176 −0.36035 0.22672 1 −0.15066 0.0036989
Balaban Topological Index (Subst. 1) −0.14849 −0.021717 −0.027491 −0.15066 1 0.12301
VAMP total dipole (whole molecule) 0.090375 0.21511 −0.40024 0.0036989 0.12301 1
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the value of Verloop L for active compounds was found to be 
high and, on the other hand, for inactive compounds, the value 
of this descriptor was found to be low [Table 6].

However, when the values of the negatively correlating 
descriptors were observed for the individual molecules of 
the series, an exactly opposite pattern was noticed. As the 
rest of the physicochemical parameters were exhibiting a 
negative correlation with the inhibitory activity, their value 
for active compounds was low, as compared to the inactive 
ones [Tables 7‑10].

Conclusion
A validated two‑dimensional QSAR model was constituted 
by five major descriptors, namely Verloop L (Subst. 1), 
Bond Dipole Moment (Subst. 2), LogP (Subst. 1), Balaban 
Topological index (Subst. 1), and VAMP Total Dipole 
(whole molecule). An in‑depth assessment of the obtained 
physicochemical descriptors provided explicit knowledge 
about the dependence of the biological activity on the 

Table 6: Correlation of biological activity of active and 
inactive molecules with Verloop L descriptor

Name of 
compound

Biological 
activity IC50 (nM)

Verloop L 
(R2)

Active 
compounds

22 1 6.76
23 1 6.76
26 1 6.73

Inactive 
compounds

58 24,100 5.75
60 31,500 5.76
61 43,600 5.74

Table 7: Correlation of biological activity of active and 
inactive molecules with logP descriptor

Name of 
compound

Biological 
activity IC50 (nM)

LogP 
(R1)

Active 
compounds

22 1 0.94
23 1 0.94
26 1 −0.058

Inactive 
compounds

58 24,100 2.80
60 31,500 2.80
61 43,600 1.54

Table 8: Correlation of biological activity of active and 
inactive molecules with bond dipole moment descriptor

Name of 
compound

Biological activity 
IC50 (nM)

Bond Dipole 
moment (R2)

Active 
compounds

22 1 −2.04
23 1 −1.95
26 1 −2.30

Inactive 
compounds

58 24,100 0.039
60 31,500 −0.96
61 43,600 2.31

Table 9: Correlation of biological activity of active and 
inactive molecules with Balaban Topological Index 

descriptor
Name of 

compound
Biological activity 

IC50 (nM)
Balaban Topological 

Index (R1)
Active 
compounds

22 1 1.713
23 1 1.618
26 1 1.715

Inactive 
compounds

58 24,100 1.717
60 31,500 1.717
61 43,600 1.903
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Figure 5: Neural plot of logP (Substituent 1) parameter with biological activity. 
As this descriptive variable is positively correlated with the biological activity, 
the output value is somewhat increasing with the increase in the value of this 
descriptive variable. However, as its correlation with the bioactivity is not 
that strong, the increment in the output value is not significant

Figure 6: Neural plot of Balaban Topological Index (Substituent 1) parameter 
with biological activity. As this descriptive variable is negatively correlated 
with the biological activity, the output value is decreasing with the increase 
in the value of this descriptive variable

Figure 7: Neural plot of VAMP Total Dipole (whole molecule) with biological 
activity. As this descriptive variable is negatively correlated with the 
biological activity, the output value is decreasing with the increase in the 
value of this descriptive variable
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molecular structure. In addition to this, the values of statistical 
parameters, such as r, r2, r2cv, s‑value, and F‑value, proved 
the statistical soundness of the developed model. Therefore, 
the valuable information retrieved from this model can be 
applied to alter the substituents in the selected molecules and 
thereby, optimized JNK1 inhibitors, in terms of potency as 
well as selectivity, can be successfully designed.
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