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Introduction
Vibrio fluvialis is a Gram‑negative, 
oxidase‑positive, and nitrate‑positive 
bacterium that has been found in both 
human and animal feces.[1] Its strains 
have been isolated from patients with 
diarrhea, bacteremia, and food poisoning. 
This pathogen, like Vibrio cholera, causes 
bacterial gastroenteritis. In addition, 
symptoms such as severe diarrhea, 
vomiting, palpitations, fever, dehydration, 
hypovolemic shock, skin lesions, and 
tissue necrosis have been found with the 
diseases caused by this bacterium.[2] Fish 
farming centers and untreated drinking 
water and wastewater are the most 
important contaminating agents.[3] Several 
cases of child mortality have been 
reported in countries including Bahrain, 
Bangladesh, America, Mexico, and Brazil.[4] 
V. fluvialis strains were resistant to many
common antibiotics such as ampicillin,
chloramphenicol, streptomycin, gentamicin,
and furazolidone due to gene mutation or
drugs transport. The drug‑resistant strains
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Background: Vibrio fluvialis is an emerging zoonotic pathogen that its antibiotic‑resistant strains are rapidly 
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activity on V. fluvialis was observed with MgO NPs and glycine. Among thiazole derivatives, only compound
7e could effciently block the growth of this pathogen. All thioureas except derivative 6c showed antibacterial
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taken in the introduction of these new antibacterial agents.
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of this bacterium threaten public health, 
which increases the cost of treatment. For 
these reasons, new antibacterial agents 
must be identified and designed to inhibit 
V. fluvialis strains.

Thiazoles as an important class of 
heterocyclic compounds are present 
in various enzymes, vitamins, and 
pharmaceutics.[5] They were used in the 
treatment of cancer, blood fat, blood 
pressure, as well as infectious diseases 
caused by HIV, Candida albicans, anopheles, 
and trypanosomes.[6] Thiazole derivatives 
could efficiently block the growth of 
Gram‑positive Staphylococcus  aureus, 
Streptococcus faecalis, and Bacillus subtilis 
and Gram‑negative Escherichia coli, 
Pseudomonas aeruginosa, and Enterobacter 
clavata.[7] Some thiazoles are effective on 
resistant bacterial strains.[8]

Imidazolidines are present in the chemical 
structure of drugs such as midazolam, 
phenytoin, and ketoconazole. They were 
applied as pain relief, anti‑inflammatory, 
anticancer, antidiabetic, antiparasitic, and 
antifungal agents.[9‑14] Good to excellent 

Access this article online

Website: 
www.jrpsjournal.com

DOI: 10.4103/jrptps.jrptps_49_18

Quick Response Code:



Abdollahi, et al.: Comparative antibacterial activity on Zoonotic Vibrio fluvialis

inhibitory activities were observed with some derivatives 
of imidazolidines against S.  aureus, P.  aeruginosa, and 
E. coli.[15,16]

Inhibitory activities were observed with 
tetrahydropyrimidine derivatives against enzymes, cancer 
and tuberculosis cells, Aspergillus niger, C.  albicans, 
and Plasmodium malariae.[17‑20] Pathogenic bacteria such 
as P.  aeruginosa and Klebsiella pneumoniae were also 
controlled with them.[21]

Metallic nanoparticles  (NPs) are attractive chemicals due 
to their therapeutic effects on parasitic, viral, bacterial, 
and neurological diseases and blood disorders. Magnesium 
is the fourth most important element of the body and the 
second most important element in the cell, which plays a 
vital role in the activity of the nervous system, muscles and 
enzymes, energy production, bone and teeth formation. Mg 
NPs were utilized as broad‑spectrum antibacterial agents 
due to their low toxicity as well as easy and inexpensive 
preparation.[22]

Protective effects of glycine, the simplest of the amino 
acids, have been confirmed in alcohol‑induced oxidative 
stress. It could inhibit the growth of Helicobacter pylori 
under in vitro culture conditions.[23]

In this research, the in vitro inhibitory potential of glycine, 
magnesium oxide NPs, and some synthesized thiazole, 
imidazolidine‑2‑thione, and tetrahydropyrimidine‑2‑thione 
derivatives was studied against V. fluvialis.

Materials and Methods
General procedure for the synthesis of thiazole 
derivatives 3a‑f

The reaction of thioamide  (1)  (1 mmol, 0.23  g), sodium 
bicarbonate  (1 mmol, 0.08  g), and 1‑bromocarbonyl 
compounds 2a-f in 1 ml of N, N-dimethylformamide as the 
solvent at room temperature for 24-46 h afforded thiazoles 
3a-f [Figure 1].[24]

3 ‑ M e t h y l - 4 - ( 4 ‑ m e t h y l t h i a z o l ‑ 2 ‑ y l ) -
1‑phenyl‑1H‑pyrazol‑5‑amine (3a)

m.p.  170°C–172°C; 1H NMR  (DMSO‑d6, 400 MHz)
δ: 2.37  (3H, s), 2.40  (3H, s), 6.71  (1H, d, J  =  9.5  Hz),
7.04  (1H, s), 7.39  (1H, m), 7.54–7.56  (3H, m), 7.62  (2H,
d, J  =  7.8  Hz) ppm; 13C NMR  (DMSO‑d6, 100 MHz) δ:
161.9, 151.1, 146.5, 146.3, 138.7, 129.8, 127.2, 123.2,
109.1, 98.1, 17.3, 14.4 ppm; IR (KBr) ν: 3314, 3262, 1620,
1556, 1401, 1200, 641 cm−1. Anal. Calcd. for C14H14N4S:
C 62.20, H 5.22, N 20.72, S 11.86; found: C 62.23, H 5.23,
N 20.70, S 11.84.

1-(2-(5‑Amino‑3‑methyl-1-phenyl‑1H‑pyrazol‑4‑yl)‑4‑methy
lthiazol‑5‑yl) ethan‑1‑one (3b)

m.p.  118°C–120°C; 1H NMR  (DMSO‑d6, 400 MHz)
δ: 2.38  (3H, s), 2.54  (3H, s), 2.69  (3H, s), 6.97  (1H, s),

7.42  (1H, t, J  =  7.1  Hz), 7.54–7.61  (5H, m) ppm; 13C 
NMR (DMSO‑d6, 100 MHz) δ: 164.5, 161.9, 159.5, 147.7, 
147.0, 138.3, 129.8, 127.5, 123.6, 115.3, 97.7, 17.5, 14.7, 
14.7 ppm; IR (KBr) ν: 3442, 3296, 1653, 1617, 1548, 1397, 
1237, 656 cm−1. Anal. Calcd. for C16H16N4OS: C  61.52, H 
5.16, N 17.94, S 10.26; found: C  61.49, H 5.18, N 17.93, 
S 10.29.

Ethyl2-(5-amino‑3‑methyl‑1‑phenyl‑1H‑pyrazol‑4‑yl)-4-
methylthiazole‑5‑carboxylate (3c)

m.p.  144°C–146°C; 1H NMR  (DMSO‑d6, 400 MHz)
δ: 1.31  (3H, t, J  =  7.1  Hz), 2.38  (3H, s), 2.67  (3H, s),
4.28  (2H, q, J  =  7.1  Hz), 6.93  (1H, d, J  =  7.3 Hz),
7.42  (1H, t, J  =  7.1  Hz), 7.54–7.61  (5H, m) ppm; 13C
NMR (DMSO‑d6, 100 MHz) δ: 192.2, 183.8, 171.4, 150.1,
149.7, 137.5, 130.0, 128.2, 124.1, 123.2, 99.4, 64.5, 18.8,
15.1, 14.3  ppm; IR  (KBr) ν: 3378, 3287, 1670, 1619,
1545, 1396, 1263, 649 cm−1. Anal. Calcd. for C17H18N4O2S:
C 59.63, H 5.30, N 16.36, S 9.36; found: C 59.65, H 5.28,
N 16.38, S 9.37.

Ethyl2-(5‑amino-3-methyl-1-phenyl-1H‑pyrazol‑4‑yl) 
thiazole‑4‑carboxylate (3d)

m.p.  165°C–167°C; 1H NMR  (DMSO‑d6, 400 MHz)
δ: 1.33  (3H, t, J  =  7.1  Hz), 2.40  (3H, s), 4.33  (2H,
q, J  =  7.1  Hz), 6.85  (1H, d, J  =  8.1  Hz,), 7.41  (1H,
t, J  =  7.2  Hz), 7.55  (3H, t, J  =  7.4  Hz), 7.62  (2H, d,
J  =  7.8  Hz), 8.32  (1H, s) ppm; 13C NMR  (DMSO‑d6,
100 MHz) δ: 162.9, 161.1, 146.9, 146.5, 145.2, 138.5,
129.8, 127.4, 123.4, 123.9, 97.6, 61.2, 14.6 ppm; IR (KBr)
ν: 3434, 3314, 1729, 1602, 1563, 1394, 1221, 639 cm−1.
Anal. Calcd. for C16H16N4O2S: C 58.52, H 4.91, N 17.06, S
9.76; found: C 58.54, H 4.88, N 17.09, S 9.75.

2‑(5‑Amino‑3‑methy l ‑1‑pheny l ‑1H‑pyrazo l ‑4‑y l ) 
thiazol‑4 (5H)‑one (3e)

m.p.  238°C–240°C; 1H NMR  (DMSO‑d6, 400 MHz) δ: 
2.42 (3H, s), 4.01 (2H, s), 7.46 (1H, m), 7.55 (1H, m), 7.56–760 
(5H, m) ppm; 13C NMR (DMSO‑d6, 100 MHz) δ: 189.8, 165.6, 
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Figure 1: Steps of the synthesis of thiazole derivatives
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149.9, 149.7, 137.4, 130.0, 128.3, 124.2, 99.4, 36.3, 15.1 ppm; 
IR  (KBr) ν: 3342, 3272, 1732, 1627, 1540, 1402, 1203, 639 
cm−1. Anal. Calcd. for C13H12N4OS: C 57.34, H 4.44, N 20.57, 
S 11.77; found: C 57.31, H 4.47, N 20.53, S 11.79.

2‑(5‑Amino‑3‑methyl‑1‑phenyl‑1H‑pyrazol‑4‑yl)‑5-
methylthiazol‑4(5H)‑one (3f)

m.p.  137°C–139°C; 1H NMR  (DMSO‑d6, 400 MHz)
δ: 1.55  (3H, d, J  =  7.2  Hz), 2.41  (3H, s), 3.85  (1H, m),
7.46  (1H, m), 7.55–760  (5H, m), 7.63  (1H, m) ppm; 13C
NMR (DMSO‑d6, 100 MHz) δ: 190.1, 164.5, 147.7, 147.1,
138.5, 129.8, 127.5, 123.6, 97.8, 65.1, 30.5, 14.7  ppm;
IR  (KBr) ν: 3329, 3265, 1736, 1629, 1534, 1396, 1194,
659 cm−1. Anal. Calcd. for C14H14N4OS: C 58.72, H 4.93, N
19.57, S 11.20; found: C 58.73, H 4.96, N 19.55, S 11.17.

Synthesis of imidazolidines 6a‑c and 
tetrahydropyrimidines 6d‑f

A mixture of diaminoalkanes 4a‑e  (10 mmol) and carbon 
disulfide  (5)  (10 mmol, 0.76  g) in the presence of MgO 
NPs  (2.5 mmol, 0.1  g) and 96% ethanol  (20  ml) were 
stirred at room temperature for 2.5–5  h to give cyclic 
thioamides 6a‑f [Figure 2].[25]

Imidazolidine-2-thione (6a)

m.p.  196°C–197°C; 1H NMR  (DMSO‑d6, 400 MHz) δ:
3.54  (4H, s), 7.91  (2H, s) ppm; IR  (KBr) ν: 3312, 1480,
1075, 760 cm−1.

4,4-Dimethylimidazolidine-2-thione (6b)

m.p.  105°C–107°C; 1H NMR  (DMSO‑d6, 400 MHz) δ:
1.17 (6H, q, J = 5.7 Hz), 3.09 (2H, t, J = 5.7 Hz), 7.83 (2H,
s) ppm; 13C NMR  (DMSO‑d6, 100 MHz) δ: 175.5, 39.7,
39.6, 19.1  ppm; IR  (KBr) ν: 3316, 1491, 1075, 763 cm−1;
Anal. Calcd. for C5H10N2S: C  46.12, H 7.74, N 21.51, S
24.63; found: C 46.07, H 7.77, N 21.49, S 24.67.

Octahydro-2H-benzo[d]imidazole-2‑thione (6c)

m.p.  153°C–155°C; 1H NMR  (DMSO‑d6, 400 MHz) δ:
1.30  (2H, m), 1.47  (2H, m), 1.81  (2H, m), 2.04  (2H, m),
3.29  (2H, m), 7.47  (2H, br) ppm; IR  (KBr) ν: 3312, 1480,
1075, 760 cm−1.

Tetrahydropyrimidine‑2(1H)‑thione (6d)

m.p.  210°C–212°C; 1H NMR  (DMSO‑d6, 400 MHz)
δ: 1.90  (2H, m), 3.27  (2H, t, J  =  6.1  Hz) 3.33  (2H, d,

J  =  2.7  Hz), 7.59  (2H, br) ppm; IR  (KBr) ν: 3307, 1510, 
1022, 786 cm−1.

5,5‑Dimethyltetrahydropyrimidine‑2(1H)‑thione (6e)

m.p.  228°C–230°C; 1H NMR  (DMSO‑d6, 400 MHz)
δ: 0.91  (6H, s), 3.31  (4H, s), 7.88  (2H, br) ppm; 13C
NMR  (DMSO‑d6, 100 MHz) δ: 175.1, 51.2, 25.6,
23.7  ppm; IR  (KBr) ν: 3316, 1491, 1075, 763 cm−1; Anal.
Calcd. for C6H12N2S: C  49.96, H 8.39, N 19.42, S 22.23;
found: C 49.93, H 8.44, N 19.46, S 22.17.

4‑Ethyltetrahydropyrimidine‑2(1H)‑thione (6f)

m.p.  139°C–140°C; 1H NMR  (DMSO‑d6, 400 MHz) δ:
0.84 (3H, t, J = 7.4 Hz), 1.39–1.48 (2H, m), 1.77–1.84 (2H,
m), 3.07–3.17  (3H, m), 7.82  (1H, br), 7.89  (1H, br) ppm;
13C NMR (DMSO‑d6, 100 MHz) δ: 175.3, 51.5, 38.3, 27.3,
23.7, 9.4  ppm; IR  (KBr) ν: 3316, 1491, 1075, 763 cm−1;
Anal. Calcd. for C4H8N2OS: C  36.35, H 6.10, N 21.19, S
24.25; found: C 36.41, H 6.15, N 21.16, S 24.23.

Synthesis of MgO nanoparticles

MgO NPs were synthesized in size 23.7–25.7  nm 
through sol–gel method.[25] 25  ml of 0.008 M 
NaOH was gradually added to a stirring mixture of 
MgNO3  (12.83  g) and starch  (0.1  g). Mixture was 
stored for 24  h at room temperature. Precipitates were 
collected and heated at 300°C for 4  h to produce MgO 
NPs. NPs were characterized using X‑ray diffractometer 
and scanning electron microscopy  (SEM) techniques 
[Figures 3 and 4].

Preparation of glycine solution

Glycine purchased from Sigma‑Aldrich was sterilized by 
filter 0.22 μm.[23]

Preparation of bacterial suspension

V. fluvialis  (IBRC‑M 10800) was purchased as
lyophilized form from the Iranian Biological Resource
Center, Tehran, Iran. Bacterium was cultured in
Mueller–Hinton broth at 30°C for 24 h. The 0.5
McFarland turbidity (1.5  ×  108 CFU/ml) of bacterium
was spectrophotometrically prepared, which was
considered as stored source.[26]
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Figure 3: X‑ray diffractometer spectrum of MgO nanoparticles
Figure 2: Steps of the synthesis of imidazolidines and tetrahydropyrimidines 
derivatives
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Determination of the minimum inhibitory concentration

All antimicrobial susceptibility tests were done through 
broth microdilution and disk diffusion methods according 
to the CLSI guidelines and repeated three times.[26] The 
results were reported as the mean of these experiments. 
The antibiotic ciprofloxacin was applied as positive control. 
In minimum inhibitory concentration  (MIC) experiment, 
initial bacterial suspension was diluted 150  times to 
achieve a concentration of 1  ×  106 CFU/ml. 10 μl of 
diluted bacterial suspension and 170 μl of Mueller–Hinton 
broth were added to each well in a 96 well microplate. 
20 μl of different concentrations of derivatives was added 
to wells to achieve the final concentrations in the range 
of 8192‑4 μg/ml. Microplates were placed in a shaking 
incubator at 30°C for 24 h. MIC values were determined as 
the lowest concentration in which the turbidity of bacterial 
growth was not observed.

Determination of the minimum bactericidal concentration

A sample of all wells without turbidity in MIC test was 
cultured in Mueller‑Hinton agar and incubated at 30°C 
for another 24 h.[27] The lowest concentration inhibited 
the visible growth of bacterial colonies was reported as 
minimum bactericidal concentration (MBC) values.

Measurement of the inhibition zone diameter

100 μl of initial bacterial suspension was spread on 
Mueller‑Hinton agar. Sterile blank discs were placed on 
the agar media. 10 μl of compounds at a concentration 
of 10240 μg/ml were poured onto them. Plates were 
incubated under similar conditions. Visible inhibition zone 
diameters (IZDs) were measured by caliper.

Results
No inhibitory activity was observed with MgO NPs and 
glycine  [Table  1]. In thiazoles 3a‑f, only derivative 3e 
could block the growth of pathogen with IZD  =  7.1  mm, 
MIC = 2048 μg/ml, and MBC = 4096 μg/ml. Imidazolidine 
derivatives 6a and b and tetrahydropyrimidine derivatives 

6d‑f showed antibacterial properties against V.  fluvialis 
with IZDs  =  6.7‑19.1  mm, MICs  =  256‑2048 μg/ml, and 
MBCs = 1024‑4096 μg/ml. The best inhibitory activity was 
recorded with imidazolidine‑2‑thione (6a).

Discussion
The excessive consumption of antibiotics has led to the 
spread of resistant bacterial strains. V.  fluvialis is an 
emerging pathogen that its standard and drug‑resistant 
strains are rapidly expanding. In this research project, 
antimicrobial potentials of glycine, MgO NPs, and 
synthetic heterocyclic compounds including thiazoles 3a‑f, 
imidazolidines 6a‑c, and tetrahydropyrimidines 6d‑f were 
assessed on standard strain of V. fluvialis.

Glycine did not show inhibitory activity against V. fluvialis. 
It was suggested that this amino acid could block the growth 
of bacteria, especially Gram‑positive strains by inhibiting 
peptidoglycan synthesis.[28] It was found that chloro and 
bromoglycine derivatives could more efficiently inhibit 
the activity of B.  subtilis, although they were ineffective 
on Salmonella enterica.[29] In addition, no antimicrobial 
activity has been observed with glycine betaine.[30]

No antimicrobial activity was recorded with MgO NPs. 
These NPs are effective on bacteria through generation 
of oxygen‑free radicals, alkalization of environment, 
and destruction of cell wall.[31] Factors such as size, pH, 
form, and concentration affect antibacterial properties. 
They were more effective on Gram‑positive bacteria than 
Gram‑negative strains.[32] They are ineffective against 
bacteria of the family Vibrionaceae such as Vibrio harveyi 
and Vibrio parahaemolyticus.[33]

Derivative 3e was the only effective thiazole on V. fluvialis. 
It contains a thiazolone ring, unlike derivatives 3a‑d, it 

Table 1: Antibacterial effects of compounds against 
Vibrio fluvialis

Compounds IZDa MICb MBCc

3a ‑ ‑ ‑
3b ‑ ‑ ‑
3c ‑ ‑ ‑
3d ‑ ‑ ‑
3e 7.1 2048 4096
3f ‑ ‑ ‑
6a 19.1 256 1024
6b 7.8 2048 4096
6c ‑ ‑ ‑
6d 7.5 2048 4096
6e 6.7 2048 4096
6f 7.4 2048 4096
Glycine ‑ ‑ ‑
MgO NPs ‑ ‑ ‑
Ciprofloxacin 23.6 4 8
amm; bμg/ml, cμg/ml. IZD: Inhibition zone diameter, MIC: Minimum 
inhibitory concentration, MBC: Minimum bactericidal concentration
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Figure 4: Scanning electron microscopy image of MgO nanoparticles
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contains a thiazolone ring. Molecular structure of heterocycle 
3f is similar to 3e, except that it contains methyl substituent 
on the 5‑position of the thiazolone ring instead of hydrogen. 
Inhibition of DNA gyraseB enzyme or HFq protein was 
recommended for their action mechanism.[8,34] A variety 
of antibacterial activities were observed with compounds 
containing thiazole ring; substituents including phenyl, nitro, 
chloro, fluoro, bromo, and fused or attached heterocycles 
have improved their inhibitory effects.[8] Antimicrobial 
potential of thirty thiazole derivatives were evaluated 
by Bharti et  al. against V.  cholera; only two compounds 
containing bromophenyl and diphenyl substituents were 
effective on this pathogen.[35] Similar inhibitory activities 
were observed with some chlorothiazole derivatives on 
Vibrio parahaemolyticus.[36]

Antibacterial activity was recorded with 
imidazolidines 6a and b. It seems that antibacterial effects 
of imidazidines 6a‑c had decreased with increasing the 
molecular volume. Imidazolidine derivatives could inhibit 
dihydrofolate reductase, which reduces dihydrofolic 
acid to tetrahydrofolic acid and lipid synthesis.[37] 
A variety of biological activities such as antitumor, 
antiviral, and antifungal were observed with N‑aryl 
imidazolidineiminothiones;[38] they were quite successful in 
inhibiting E. coli, P. aeruginosa, and B. subtilis.

All tetrahydropyrimidines 6d‑f were effective on V.  fluvialis. 
Molecular volume has been ineffective on antibacterial 
activity. Inhibitory activity of tetrahydropyrimidine derivatives 
was evaluated on pathogenic bacteria such as E.  coli, 
S. aureus, P. aeruginosa, K. pneumoniae, and B. subtilis.[39‑41]

Conclusion
To conclude, some synthetic heterocycles, especially 
imidazolidine‑2‑thion  (6a) showed inhibitory activity 
against V.  fluvialis, while their effects were not significant 
in comparison with ciprofloxacin. Introduction of new 
substituents on these heterocyclic compounds or their 
utilization as ligand in complexes can improve antibacterial 
effects; it must be considered in future researches.
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