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A B S T R A C T

Despite a quite short early history, computational drug design and discovery 
methods can now be efficient in reducing costs and speeding up drug developing 
procedure. Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor 
implicated in the regulation of body weight. Despite its clinical reputation, there is 
a lack of in-depth knowledge about structure and behavior of MC4R in lipid bilayer 
due to the absence of a crystal structure. In this context, a computational 
investigation was presented to study the Melnocortin 4 receptor (MC4R) receptor 
integrating homology modeling (HM) and molecular dynamics (MD) simulations. 
A homology-based model of the MC4R receptor was produced. The resulting 
homology model of the receptor was then used for molecular dynamics simulation 
studies in explicit POPC. The receptor structure that ensued was refined and the 
final native conformation was obtained. 
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Introduction 

Maintenance of body weight is controlled by 
complicated factors such as measurement of energy 
intake, external environmental conditions, and 
feedback that then adjusts further feed intake and 
expenditure. Therefore, numerous behavioral, 
environmental, and genetic factors can cause obesity. 
Different mutations in the leptin and the leptin 
receptor have given some useful information on 
genetic components involved in the regulation of 
energy balance in body [1]. Among various proteins, 
one of them with particular interest that is involved in 
the regulation of energy homeostasis is the 
melanocortin-4 receptor (MC4R). The MC4R 
response to leptin signaling is a link between food 
intake and body [2]. Melanocortin receptors belong to 
the superfamily of G protein-coupled receptors 
(GPCRs). Five melanocortin receptor subtypes have 
been identified thus far. They differ in their tissue 
distribution as well as physiological functions. MC4R 
is found primarily in the brain [3]. 
In structure-based drug design procedure, knowledge 
of the three dimensional (3D) structure of a target 
protein is of greatest importance. The 3D structure of 
a typical protein is either experimentally determined 
by X-ray crystallography or by NMR spectroscopy. 
However, the rate at which protein sequences are 
currently being introduced exceeds by far the rate at 
which 3D structures of target proteins are introduced 
experimentally. Thus, for a considerable number of 
protein targets, the 3D structure will not be readily 
available. In such cases a computational protein 
modeling is a suitable alternative way. 
The final aim of protein modeling is to forecast a 
reliable structure from its sequence with an accuracy 
that is comparable to the best results obtained 
experimentally. This would permit researchers to 
safely apply quickly generated in silico protein 
models in all the fields where today only 
experimentally achieved structures provide a firm 
basis such as structure-based drug design, analysis of 
protein function, interactions, antigenic behavior, and 
rational design of proteins with increased stability or 
novel functions. On the other hand, the protein 
modeling is the only way to find structural 
information if experimental techniques be 
unsuccessful. It must be noted that many proteins are 
simply too large or unstable for analysis by 
experimental techniques such as NMR and cannot be 
crystallized by X-ray crystallography. Among 

computational methods for modeling of protein 
structures, the most reliable computer-based method 
for developing a three-dimensional protein structure 
is homology modeling (HM) [4]. 
However, HM only considers information available 
from the template protein structures. The model 
remains at a rather approximate level if in the target 
protein several amino acids of the active site are 
replaced with respect to those in the template 
protein(s) [5]. 
The super family of G-protein coupled receptors 
(GPCRs) includes a large part of present drug targets 
(about 40 to 50 percent) [6]. These transmembrane 
receptors receive different extracellular signals such 
as photons, peptides, proteins, lipids, eicosanoids, 
purines, nucleotides, excitatory amino acids, ions, or 
small molecules such as serotonin (5-HT) and then, 
following a geometrical change of the protein, 
propagate the signal across the lipid bilayer to the 
intracellular space.  
The recent introduction of the crystal structure of 
GPCR proteins such as bovine rhodopsin (Rh) (that is 
the first prototypical GPCR structure to be solved at 
high resolution) has made possible homology-based 
model production of other GPCRs. Typically, a 
crystal of GPCRs can be achieved from X-
ray/neutron scattering, or a solution phase NMR 
structure such as those provided through the protein 
databank (http://www.pdb.org/). When such 3D 
experimental structures are not available, researchers 
typically can use a homology model as an initial 
starting structure. It is known that an ineffective 
refinement technique is one of the three main sources 
of errors affecting structures obtained from HM, 
together with inappropriate template selection and 
inaccurate [7]. One of the most important uses of 
molecular dynamics simulations (MDS) of proteins is 
actually the refinement of homology model 
structures. The coupling of HM techniques with 
MDS is helpful in that it tackles the sampling 
deficiency of conformational space of dynamics 
simulations by providing good quality initial guesses 
for the proteins. Indeed, HM provides the 
requirements of force fields to explore the huge 
conformational space of protein structures.  The 
homology model of human MC4R (PDB code) has 
recently been released [8].The main drawbacks of this 
structure is not using of MD. In this study, a 
homology model of the MC4R is presented. This 
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model is employed as the starting point for 
nanosecond-duration MDS in a phospholipid bilayer.  

Materials and Methods 

Homology Modeling (HM) 

In the absence of a crystal structure, the 3D structure 
of MC4R was predicted by HM using extensive 
primary and secondary structural knowledge. The 
primary sequence of MC4R protein was retrieved 
from UniProtKB/Swiss-Prot database (primary 
accession number: P32245) [9]. First, sequence 
alignments must be performed to identify conserved 
residues and motifs that might have structural and 
functional implications. The sequence of MC4R, 
consisting of 332 residues, was retrieved from the 
SWISSPROT database [10]. 

One of the most important challenges in HM is to 
find a suitable template. SWISS_MODEL was 
employed to find the homologous protein(s) with 
known structures to be used as the template in the 
process of MC4R 3D model building [11]. To select 
templates for a given protein, the sequences of the 
template structure library are searched.  
The structure of human adenosine receptor (PDB ID: 
2YDO) was selected as the template of HM 
procedure [12]. Several helix prediction methods were 
applied in a direct manner using their websites to 
allocate MC4R helixes including: HMMTOP [13], 
TOPCONS [14], OCTOPUS [15], Philius[16], TMpred[4], 
TMmod[17], PolyPhobius[18], split. pmfst[19], 
TMHMM[20], DAS[21].  
The MODELLER [22] program version 9.10 was used 
to construct the human structure. . MODELLER is a 
program that models 3D of proteins and their 
assemblies by satisfaction of spatial restrains [23]. 
MODELLER tools can also be used for de novo 
modeling of loops, and model assessment [24]. 
From the 1000 model generated with MODELLER 
with the same alignment, the one corresponding to 
the lowest value of the probability density function 
(pdf) and fewest restraints violations was selected for 
further analysis. An ab initio algorithm implemented 
in the software was used to refine some of the loops 
of the selected model. 

The backbone root mean square deviations (RMSDs) 
of the models relative to the templates were 
calculated using MODELLER. The RMSD 
differences from template geometry for bond lengths 
and bond angles were also calculated using 
MODELLER. The overall stereochemical quality of 
the final developed model was assessed by the 
program PROCHECK [25]. G-factor was calculated 
for the developed model using PROCHECK. 
Environment profile of final developed model was 
checked using Verify-3D (Structure Evaluation 
Server)[26]. 

Molecular Dynamics Simulation  

Molecular dynamics (MD) simulation was carried out 
using the 4.5 version of GROMACS software 
(www.gromacs.org), using GROMOS96 
forcefield[27]. The structure of MC4R obtained from 
the HM procedure was used as starting point for the 
MD simulation. Protein was soaked in a cubic box of 
SPC (Single Point Charge) water molecules [28] and 
simulated using periodic boundary conditions. All the 
protein atoms were at a distance equal or greater than 
0.6 nm from the box edges.  
MD simulation was carried in the isobaric-isothermal 
ensemble (NPT: 300 K and 1 bar). Using the 
productive MD, pressure was kept constant at 1 bar 
by altering the box dimensions and the time-constant 
for pressure coupling was set to 1 ps. The LINCS [29] 
algorithm was employed to constrain bond lengths, 
permitting the application of 2 fs time step. 
The particle mesh Ewald method (PME) was 
used for the computation of the electrostatic 
forces [30]. Van der Waals and Coulomb 
interactions were calculated within cutoff of 10 
angstrom.  

Results and discussion 

Homology modeling 

Various steps involved in building and validation of 
homology model of MC4R are represented as a flow 
chart in Figure 1. 
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Fig. 2.  Consensus of 8%, 16%, 25%, 50%, 75% and 100% of each residue in MC4R predicted as helix by 9 different helix 
prediction methods. Each residue has a score from 1 to 9 based on how many methods predicted it as helix. 

Table 1. Prediction of transmembrane regions of MC4R by various methodologies. 

To align the sequence of MC4R receptor with that of 
template, the CLUSTALW program was employed 
directly from its website 
athttp://www2.ebi.ac.uk/CLUSTALW [34]. 
The alignment was adjusted manually based on the 
results of TM helix prediction procedure and 

conserved key residues of GPCRs suggested by 
Baldwin et al. [35]. 
An optimal sequence alignment is necessary to the 
success of HM procedure. The sequence identity 
between target and template is; 30%. To optimize the 
alignment of different regions between template and 

Helix HMMTOP TOPCONS OCTOPUS Philius TMpred TMmod PolyPhobius Split.pmfst TMHMM DAS 

I 50-69 50-70 50-70 49-69 50-70 50-70 50-70 46-71 50-69 50-68

II 78-96 79-99 79-99 78-98 78-96 82-106 79-99 79-95 81-103 80-91

III 127-145 125-145 125-145 123-145 124-145 125-145 124-145 123-146 123-145 128-144

IV 166-186 168-188 168-188 165-187 166-187 166-186 166-186 164-187 166-188 166-188

V 193-212 193-213 193-213 193-216 192-213 193-217 192-217 191-220 192-214 190-217

VI 243-267 244-264 244-266 243-267 246-267 245-269 244-269 243-270 245-267 245-269

VII 286-304 284-304 284-304 282-304 286-304 284-304 284-304 278-300 282-304 283-297
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target, the initial alignment was adjusted so as to 
maximize overlap between the predicted locations of 
the TM helices in homology model and their 
locations in the pdb structure of MC4R. This 
provided a first-pass refinement of the alignment of 
the helices. 

Validation of HM structure 

Good overall stereochemistry is obtained for the 
model with 87.6% of the residue psi/phi angles 
falling in the most favored regions and 11.1% in the 
allowed region (Fig. 3).  

Fig. 3. Ramachandran plot of MC4R obtained from HM. 

VERIFY3D is another tool proposed by Eisenberg 
and co-workers that derives a “3D–1D”profile based 
on the local environment of each residue (6). This 
“3D–1D”profile includes the statistical preferences 

for the following criteria: (i) the area of the residue 
that is buried; (ii) the fraction of side-chain area that 
is covered by polar atoms (oxygen and nitrogen); (iii) 
the local secondary structure (Table 2). 

Table 2. Quality of MC4R in HM and MD checked by PROCHECK and ERRAT 

Region% G-factor Overal quality 
factor of 
ERRAT 

MC4R Favored Additional 
allowed 

Generously 
allowed 

Disallowed Dihedrals Overall 

Afetr HM 87.6 11.1 0.7 0.7 -0.07 -0.04 65.839
After Part I 72.5 23.2 1.0 3.3 -0.51 -0.37 78.813 
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equilibration run of 1 ns, during which the protein 
restraints were retained, but the pressure was reached 
to 1 bar along all three coordinate axes. 
As a result of MDS procedure constraints between 
TM helices were reduced in sequential steps to avoid 
unwanted structural drifts during production phase of 
the MD. The POPC–MC4R system remained firm 
after the relaxation as very slight drift in energy, 
temperature, or lipids density was monitored during 
the MD (data not shown). 
Fig. 5A shows the time history of RMSD for protein 
structure immersed in lipid bilayer relative to the 
starting structure (the output of the homology 
modeling process). As it is evident, Cα RMSD was 

not increased significantly after 7 ns of simulations. 
The initial rise in the Cα RMSD over the first 200 –
300 ps is common in such simulations and may be 
attributed to relaxation of the protein upon its transfer 
to a bilayer environment and/or inaccuracies in the 
potential function. The RMSD value implies that this 
protein structure has been affected by its environment 
dramatically. In Fig. 5B variation in total energy 
versus time in 10 ns of MD is illustrated, which 
shows small fluctuation in the last 5 ns of MD. 
Furthermore, the average temperature in 10 ns of MD 
simulation at 310 K was equal to 310 ±1.16 K for the 
investigated system (Fig. 6B). 

Fig. 6. (A) Time dependence of the RMSDs (Å) from homology model of MC4R for the Cα atoms in the 10 ns MD simulation 
(B) Time dependence of the temperature during thefirst phase of MD simulation.

Therefore, the extracted equilibrium structure at 310 
K belonging to the MC4R was obtained under stable 
temperature conditions. These facts show that energy 
conservation was satisfied in MD simulation. The 
final conformation of the MC4R in POPC and water 
is illustrated in Fig. 7. 

Fig. 7 MC4R in hydrated POPC lipid bilayer after 10 ns 
MD simulation, lipids in cyan and waters in red/white. The 
front half of the lipid bilayer and water molecules doesn't 
show for the sake of clarity. 
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After structural refinement of MC4R model by MD 
simulation, the geometric quality of the backbone 
conformation, namely all the tests performed in 

homology modeling step, was carried out again and 
the quality of the model was confirmed (Table 2 and 
Figure8).

Fig. 8. Ramachandran plot of MC4R after MD simulation. 

ERRAT is a so-called “overall quality factor” for 
nonbonded atomic interactions, and higher scores 
mean higher quality [37]. The normally accepted range 
is >50 for a high quality model [37]. In the current 
case, the ERRAT score is 78.813, well within the 
range of a high quality model and more than HM 
product. As can be seen in the Table 2 the ERRAT 
score for the MC4R after HM is 65.839. Thus, the 
backbone conformation and non-bonded interactions 
of the homology model and protein after MD part 1 
are all within a normal range. Also, the final structure 
of MC4R indicates that more than 96.7% of residue 
φ-ψ angles are in the favored or additional allowed 
regions of Ramachandran plot (Table 2). With 
respect to Ramachandran plot, it is observed that only 
two residues (Ser85, Asn17) are in a disallowed 
region after HM phase. After MD, 9 residues 
(Lys164, Ala176, Ile194, Val88, Phe81, His10, 
Cys277, Tyr153, and Phe201) are located in the 
disallowed region (Figure 8).    
In brief, the quality of the backbone geometry of the 
developed model, the residue interactions, the residue 
contacts, and the dynamic stability of the structure 
are within the limits established for the reasonably 
good model structures. 

RMSF 

The RMSF plot (figure 9) reveals a comparatively 
higher fluctuation of TM4 (about residue 168–186) 
than other TMs. In Overall, the movements of TMs, 
which surround by the lipid molecules, are lower than 
other parts of receptor..  
From the RMSF plot, it can be seen that ICL3 
(residues 218–244) and ECL3 (residues 268–283) 
exhibit increased fluctuations.  
The radius of gyration, Rg, is defined here by 

ܴ௚ଶ ൌ
ଵ

N
෌ ሺr୧ െ ҧሻଶܚ

ே
௜ୀଵ

where N, ri, and  ࢘ത (=
ଵ

N
∑ r୧
ே
୧ୀଵ ሻ are the total number 

of the atoms in the protein investigated, the 
coordinate vector of atom i, and the center of 
geometry of the protein, respectively. 
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Fig. 9. RMSF plot of the Cα of amino acids; TM: 
transmembrane helix; ECL: extracellular loop; ICL: 
intracellular loop. 

The fall in the radius of gyration values (Fig.10) 
reveals that the structure of MC4R becomes more 
compact in the presence of lipids. 

Fig. 10. Radius of gyration during 10 ns MDS. 

Conclusion 

Being a GPCR that is expressed in brain, MC4R 
poses a unique challenge as a system for study. The 
present study attempted to address several issues, 
starting from model building to MD simulation in the 
presence explicit lipid bilayer that are vital to the 
proper understanding of the actual mechanism of the 
functioning of GPCRs and that are also useful in the 
drug discovery process. The predicted structure of 
MC4R by using homology modeling was found to 
stand up to scrutiny, with about 87.6% of the residues 
falling within the most favored regions of the 
Ramachandran plot, while its quality was further 
refined and established through MDS procedure. The 
simulation results imply that the structure is stable in 

an explicit POPC environment during the simulation, 
and that the helical conformations, a outstanding 
feature of GPCR super family, which remains 
parallel to the lipid bilayer were preserved. 
The present work on MC4R sheds light on the 
structural aspects of an important GPCR, a famous 
protein family of vital medical importance. This 
computational homology modeling work in 
conjunction with MD simulations has successfully 
predicted the structure and provided insight into the 
structural characteristics of the MC4R and its 
dynamically changing conformations in the lipid 
bilayer. 
This might help to design future experiments and 
further the understanding of this novel receptor. 
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