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A B S T R A C T 

Thermo-sensitive polymers were prepared by graft copolymerization of gelatin with 
N-Isopropylacrylamide via gamma radiation. Characterization of polymers such as
DSC analysis, swelling in different ratios and cell assays were investigated. DSC and
solubility analysis showed gelatin and N-Isopropylacrylamide monomers were grafted
via gamma radiation successfully. Results show swelling of samples increased as
gelatin increased. Swelling ratio and curves results administrated hyd-ro-philicity /
hydrophobicity of hydrogel that this property is due to presence of N-
Isopropylacrylamide in different temperatures. The polymer was tested for harvesting
epithelial cells after carrying out cell culture at 37 °C and incubating the confluent
cells at 10°C for spontaneous detachment of cell sheet from polymer surface without
enzyme treatment. These unique properties of the hydrogel would make it a promising
support for drug delivery systems and tissue regeneration.
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Introduction 

During recent decades several materials and medical 
devices have been produced for medical purposes. 
For tissue engineering, it is desirable to recover the 
monolayer cells in a cell sheet structure at the end of 
the culture stage without using a biochemical or 
chemical reagent [1, 2, 3]. Such a cell sheet constructed 
in vitro could be useful in various clinical situations 
to regenerate tissues (especially epithelial tissues) 
such as artificial skin and artificial cornea [4, 5]. Cell 
sheet engineering has been developed to avoid tissue 
reconstruction limitations using biodegradable 
scaffolds or single cell suspension injection [6, 7,  8]. 
Cell sheets are developed by thermo-responsive 
culture dishes [9, 10, 11]. Thermo-responsive polymers 
are grafted to dishes covalently, which allows 
different cell types to attach and proliferate at 37°C 
[12, 13, 14]. Cells detach spontaneously without using 
enzymes when the temperature decreases below 
32°C; this is due to the natural specification of the 
intelligent polymers, and also to the detachment of 
the cell metabolic changes made by the polymer 
resulting from decreasing temperature [15, 16, 17]. 
PNIPAAm and polyacrylic acid are successfully 
grafted into different substrates such as 
polytetrafluoroethylene (PTFE) and polyvinylidene 
fluoride (PVDF) or  polyethylenetrephetelate (PET) 
using gamma radiation[18, 19, 20]. The hydrogels such as 
chitosan and other natural polymers can be used for 
grafting with PNIPAAm by different methods. These 
intelligent polymers  increased cell attachment [21-30]. 
In this work, hydrogels based on gelatin (hydrophilic 
material) grafted N-isopropylacrylamide were 
prepared by 60Co gamma radiation, the thermo 

sensitivity and swelling  & cellular properties of the 
polymers were also investigated. 

Materials and Methods 

Gelatin was purchased from Fluka Company (Gelatin 
from porcine skin, Type A. Sigma-aldrich). N-
Isopropylacrylamide (NIPAAm, Aldrich) were 
recrystallized from nhexane and methanol freshly 
before use. 
A series of gelatin-g-NIPAAm hydrogels were 
prepared in the following procedures: pure gelatin 
dissolved in 5% aqueous acetic acid (25 ml) in a glass 
reaction bottle, the monomer was added to the gelatin 
solution (W% gelatin/monomer =1/1 and 3/1). 
Mohr’s salt (ammonium ferrous sulphate) was added 
to the mixture to minimize homopolymerization 
during irradiation. The solution was deoxygenated by 
purging with nitrogen for 30 min. The sealed reaction 
bottles were irradiated at doses 10 and 20 kGy. After 
irradiation, the product was extracted with methanol 
in a Soxhlet extractor for 48 h, in order to remove the 
unreacted monomer, homopolymer and other 
impurities. The hydrogel was dried at 40°C in a 
vacuum oven overnight (Figure 1).  
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Fig. 1. Mechanism of graft polymerization of poly-NIPAAm with gelatin by gamma radiation. 

For cell culture; fibroblast (l929) cells (obtained from 
National Cell Bank of Iran, NCBI) were cultured in 
RPMI 1640 supplemented with 10% fetal calf serum, 
100 U/ml penicillin and 100 μg/ml streptomycin. 
They were incubated at 37°C in a humidified CO2-
incubator with 5% CO2 and 95% air. For Cytotoxicity 
assay, The effect of diethylenetriaminepentacetic acid 
(DTPA) on these cell lines, 3-(4,5-dimethyl-2-
thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide 
(MTT), colorimetric assay was applied. Briefly, 
growing cells (1.5 × 104 cells/ml) were transferred 
into 96-well culture plates containing 200 μl of 
medium and incubated for 24 h. Various 
concentrations of DTPA (0-100 μM) were added and 
incubated for different time intervals followed by 
MTT assay. The percent of cell viability was 
calculated as the (mean OD of treated cells/mean OD 
of control cells. 

Swelling ratio of the hydrogels in different doses (10 
and 20 KGy) and temperatures (10-40°C) in the 
distilled water was investigated. The samples were 
investigated by thermal analysis using the DSC 
device (NETZSCHDSC200F3), with the heating rate 
of 5 degree per minute from 0°C to 60°C in a 
nitrogen gas atmosphere.  
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Results and Discussion  

‘Table 1’ indicated swelling ratio of the hydrogels in 
different doses. Swelling ratio for 10 and 20 KGy 
were calculated which demonstrated hydrophilicity of 
samples for 10 KGy and NIPAAm increasing was 
about 14 which showed hydrophilicity of the 
samples. ‘Figure 2’ showed swelling / temperature 

ratio of hydrogels. The curve slope related to critical 
temperature of the gels at 30°C and this demonstrated 
presence of PNIPAAm in the hydrogels and no 
significant change in polymer LCST during radiation 
and graft process. 

Table 1. Swelling ratio of copolymers with to different doses for 1 hour and 1 week at 25°C. 

NIPAAm/gelatin(1/1) at 
20 KGy 

NIPAAm/gelatin(1/1) 
at 10 KGy 

NIPAAm/gelatin(3/1) 
at 20 KGy 

NIPAAm/gelatin(3/1) 
at 10 KGy 

Sample 

7.1±0.1 7.6±0.4   5.4±0.1 5.5±0.3 1hours

14.1±0.1 14.3±0.4 10.8±0.2 11.1±0.1 1 weeks  
(The data are presented as the mean values S.D, P < 0.05).

The grafted samples’ DSC analysis review showed a 
critical temperature of the grafted PNIPAAm. ‘Figure 
3’ shows the DSC thermo-gram in which the curve 

slope in 30°C is obtained. This shows no significant 
change in the smart polymer critical temperature 
during radiation and graft process. 

Fig. 2. Ws/Wd ratios to T°C, the curve slop in 30°C showed presence of PNIPAAm in hydrogel (dose :10KGy , 
NIPAAm/gelatin:1/1). 
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Fig. 3. DSC spectra of the hydrogel grafted by gamma radiation (radiation dose : 10 KGy)

At physiological temperature (37°C), the hydrogel 
turns into a rigid gel within 10 min and the phase 
transition is reversible. Biocompatibility data 
demonstrated that the hydrogel supported cell 
adhesion and proliferation and the cells also 
maintained high viability ‘Figure 4’. After cultured 
for 7 days on gel, all cells are alive, suggesting that 
hydrogel is suitable for cell attachment and 
proliferation ‘Figure 4a’ and viability is 85% , When 
cells were placed outside the incubator and the 
medium cooled from 37 to 10°C, almost all cells are 
alive ‘Figure 4b’ and viability is up 80% . ‘Figure 
5a’shown good cells grown on gel surface (85%) at 
physiological temperature (37°C), ‘Figure 5b’ shown 
cells grown detached from the hydrogel surface 
spontaneously, in the absence of enzymes 
(trypsin/EDTA). Cell detachment efficiency from the 
hydrogel was high. After a longer period of cell 
cultivation for 7 days, confluent cells formed a 
continuous monolayer cell sheet on the surface of the 
hydrogel. The cell sheet spontaneously detached from 
the surface of the thermo-reversible hydrogel when 
cooled to 10°C without treating with any enzymes. 
As shown from ‘Figure 5b’ detachment of the cell 
monolayer started from the edge of the cell 

monolayer. After 60 min incubation at 10°C, a 
monolayer cell sheet could be lifted up from the edge 
upon mild perturbation of the medium. A living cell 
sheet completely detached from the culture surface 
could be obtained within 60 min ‘Figure 5b’. 
Although the cell sheet was folded into an irregular 
shape by contractile forces between cells, cell–cell 
connections were well preserved in the rolled- up 
sheet. These results demonstrate that cold treatment 
effectively released the cell sheet from the plate 
without considerable damage of the cell–cell 
connections. 



Heidari-Keshel et al. 

Copyright © 2013 by Kermanshah University of Medical Sciences         JRPS, 2013, 2(2), 171‐178| 176 

Fig. 4. Cells viability on gel surface at physiological temperature (37°C) (A), and after 60 min incubation at 10 °C ( B) and 
control surface (TCPS). 

Fig. 5. Cells growth on hydrogel. A) Good cells grown on gel surface at physiological temperature (37°C) , B) Detachment of the cell 
monolayer after 60 min incubation at 10 °C .

A B
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Conclusion  

In this work, hydrogels based on gelatin grafted N-
isopropylacrylamide was prepared by 60°C gamma 
radiation, the thermo sensitivity and swelling and 
cellular properties of the polymers were also 
investigated. The gelatin-g-NIPAAm hydrogels 
showed good thermo-sensitivity and swelling 
property. Results show swelling of samples decreased 
with gelatin increasing also swelling ratio of samples 
decreased with radiation dose increasing due to more 
cross linking between polymeric chains. Swelling 
ratio and curves results administrated hydrophilicity / 
hydrophobicity of hydrogel that this property is due 
to presence of PNIPAAm in different temperatures. 
Fibroblast cells grew well on the hydrogel surface at 
37°C and showed high viability that this 
administrated biocompatibility and non toxicity of 
our hydrogel. MTT analysis showed good viability of 
hydrogel at 37°C. Cells also (cell sheet) detached 
spontaneously when temperature decreased at 10°C, 
without using enzymes. MTT analysis showed good 
viability of the hydrogel at 10°C that this 
administrated no significant change in cell viability. 
These unique properties of the hydrogel would make 
it a promising support for drug delivery systems and 
tissue regeneration. 
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