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Abstract

Background: In recent decades, research concerning the antioxidant properties of phenolic compounds has increased, but
data about their interaction in mixture systems are still rare. It has been found that in the case of a mixture of antioxidants, the
antioxidant activity is not always the sum of the activity of each compound.

Methods: This study considered the antioxidant activity of individual antioxidants, including quercetin, resveratrol, and
ascorbic acid. Additionally, their binary mixtures, such as quercetin/resveratrol (Q/R), quercetin/ascorbic acid (Q/A), and
resveratrol/ascorbic acid (R/A), were applied to understand the antioxidant effect between these compounds. The antioxidant
capacity was assayed for different concentrations and ratios of these compounds using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and
ferric reducing antioxidant power (FRAP) tests.

Results: The results showed the superiority of quercetin by both methods, followed by ascorbic acid and resveratrol using the
DPPH test, and resveratrol and ascorbic acid using the FRAP test. Also, the antagonism effect was confirmed for all antioxidant
mixtures at different concentrations and ratios, and the ratio of 5:1 of stronger antioxidants to weaker antioxidants showed
lower antagonism in binary mixtures. The magnitude of this effect is affected by the antioxidant activity assay method, type of
antioxidant, compound concentration, their ratios, and mutual interactions between antioxidants. This indicates that the
antioxidant activity of antioxidant mixtures is not predictable based on the antioxidant capacity of individual compounds.
Moreover, a high correlation was obtained between DPPH and FRAP antioxidant assay methods for binary mixtures of
quercetin/resveratrol and quercetin/ascorbic acid.

Conclusions: The obtained results can be helpful for the proper design of functional foods, food supplements, and
applications in other industries such as skincare.
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1. Background

Today, awareness of the health benefits of functional
foods has made these materials the subject of much
research. In the design of functional foods, special
attention is paid to the use of antioxidant compounds
that exist in nature in a mixed form. In addition to being

used in the food industry, antioxidant compounds are
applied in the cosmetics and skincare industries.
Antioxidant compounds are mainly phenolic
compounds. Phenolic compounds are a large group,
ranging from simple compounds such as
hydroxycinnamic acids, hydroxybenzoic acids, and
stilbenes, to highly complex structures such as
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flavonols, catechins, anthocyanins, and
proanthocyanidins, etc. (1). Flavonoids are widely
distributed in plants, mainly vegetables, fruits, tea, etc.
They comprise a large group of compounds with several
phenolic hydroxyl groups attached to ring structures,
conferring antioxidant properties (2). The main roles of
antioxidant compounds are related to preventing
reactive species formation, scavenging free radicals,
forming complexes with prooxidant metals, quenching
photosensitizers and singlet oxygen, enzyme activation
or deactivation, and repairing or removing damage
caused by reactive species (3). Additionally, it has been
proven that many polyphenol properties, such as anti-
inflammatory, anti-cancer, anti-diabetes, and prevention
of permeation and capillary fragility, are due to their
antioxidant effects (4).

One of the antioxidant compounds is quercetin.
Quercetin is a flavonoid compound present in many
plant sources like onion, broccoli, lettuce, citrus,
buckwheat, berries, and olive oil. Quercetin is used as a
colorant, food additive, and raw material for the
cosmetic, pharmaceutical, and fine chemical industries
(5). The basic role in the antioxidant activity of quercetin
is related to a hydroxyl group in C;, a double bond
between C, - C;, a carbonyl group in C, (on ring C), and
polyhydroxylated A and B aromatic rings (Figure 1) (6).

Another antioxidant is resveratrol. Resveratrol (trans-
3,4’,5-trihydroxystilbene) is a phytoalexin found in
various dietary sources, including plums, grapes, and
peanuts (7). Resveratrol is a stilbene with antioxidant,
immunomodulatory, anti-inflammatory, glucose and
lipid regulatory, cardiovascular protective, and
neuroprotective properties (8). Its antioxidant activity is
attributed to the hydrogen transfer capacity of three
phenolic groups and the trans-isomerism of the double
bond (Figure 1) (9).

Ascorbic acid (also known as vitamin C) is one of the
main and best-known components necessary for the
correct functioning of the human body. Vitamin C is an
organic compound that belongs to the group of
unsaturated polyhydroxy alcohols. It is soluble in water.
Ascorbic acid is a strong reducing agent due to the
presence of double bonds at the second and third
carbons, as well as four hydroxyl groups in the second,
third, fifth, and sixth carbon positions (Figure 1).
Moreover, due to the proximity of the carbonyl and
hydroxyl groups, ascorbic acid is an ideal electron or
hydrogen donor, which makes it a cofactor for many
enzymatic reactions in living organisms (10).

In recent decades, research concerning the
antioxidant properties of phenolic compounds has
increased, but data about their interaction in mixture

systems are still rare. It has been found that in the case
of a mixture of antioxidants, the antioxidant activity is
not always the sum of the activity of each compound.
The interaction between antioxidant mixtures can
result in synergism, antagonism, or an additive effect.
Therefore, recognizing the interaction and properties of
these compounds allows for the selection of new
antioxidant mixtures, which can better ensure their
application in foods, pharmaceuticals, and cosmetic
industries. Although some studies have been conducted
on the antioxidant capacity of quercetin, resveratrol,
and ascorbic acid, and some of their binary mixtures,
the effect of antioxidant ratios and their concentrations
in binary mixtures on the type of antioxidant effect has
not been considered.

2. Objectives

Due to the importance of these compounds as potent
antioxidants and their health benefits, this study aimed
to assess antioxidant activity in binary mixtures of
quercetin, resveratrol, and ascorbic acid in different
concentrations and ratios using 1,I-diphenyl-2-
picrylhydrazyl (DPPH) and ferric reducing antioxidant
power (FRAP) tests.

3. Methods

3.1. Materials

Quercetin, resveratrol, Trolox, ascorbic acid, and
DPPH were purchased from Sigma-Aldrich, Merck (St.
Louis, MO, USA). Ethanol and methanol were of
analytical grade and purchased from Merck (Darmstadt,
Germany).

3.2. DPPH Assay

The quercetin, resveratrol, and ascorbic acid
solutions were prepared at two concentration ranges:
50-250 pM and 100 - 500 pM in ethanol. The DPPH assay
was performed according to Brand-Williams et al. with
slight modifications (11). The stock solution of DPPH was
prepared by dissolving 4.8 mg of DPPH in 20 mlL
methanol and was stored at -20°C until analysis. For
analysis, the DPPH solution was diluted 5.5 times with
methanol.

In the first step, 50 L of different concentrations of
quercetin, ascorbic acid, and resveratrol were added to
950 UL of the DPPH solution. In the second step, binary
mixtures of these compounds — quercetin/resveratrol
(Q/R), quercetin/ascorbic acid (Q/A), and
resveratrol/ascorbic acid (R/A) — in concentration ranges
of 50/250,100/200, 150/150,200/100, 250/50, and
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Figure 1. The structure of quercetin, resveratrol, and ascorbic acid

100/500, 200/400, 300/300, 400/200, and 500/100 uM
(25 pL of each compound) were added to 950 uL of the
DPPH solution. The reaction was carried out for 1 hour in
the dark.

The blank sample was prepared by adding 50 uL of
ethanol to 950 uL of DPPH reagent. The absorbance was
measured at 515 nm using a UV-Vis spectrophotometer
(Lambda 25; PerkinElmer, Waltham, MA, USA). The
percentage of radical scavenging was calculated using
the following formula (Equation 1):

Ab - As
—Ab x 100 (1)

Radical scavenging =

Where ‘A’ and ‘A{’ are the absorbance values of the
blank and the sample, respectively.

3.3. Ferric Reducing Antioxidant Power Assay

The FRAP assay is based on the increase in absorbance
at 595 nm due to the formation of a 2,4,6-tripyridyl-s-

triazine (TPTZ)-Fe?* complex. The assay was performed
according to Benzie and Strain (12). Stock reagents
included FeCl;-6H,0 solution (20 mM), acetate buffer
(300 mM, pH =3.6), and TPTZ solution (10 mM in 40 mM
HCl). The working reagent was freshly prepared by
mixing 2.5 mL of FeCl;-6H,0, 2.5 mL of TPTZ, and 25 mL
of acetate buffer, and it was warmed to 37°C before use.

Quercetin, resveratrol, and ascorbic acid solutions
were prepared at concentrations of 50 - 250 pM and 100 -
500 pM in ethanol. Then, 50 uyL of different
concentrations of each compound, and their binary
mixtures (Q/R, Q/A, and R/A) in the concentration ranges
of 50/250, 100/200, 150[150, 200/100, 25050, and
100/500, 200/400, 300/300, 400/200, and 500/100 uM
(25 puL of each compound), were added to 950 pL of the
working reagent and incubated for 30 minutes at 37°C
in the dark.
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The absorbance was measured at 595 nm. A standard
curve was obtained by measuring the absorbance of
Trolox standard solutions in the range of 0 - 500 uM.
Antioxidant activity was expressed in pM of Trolox
equivalents.

3.4. Statistical Analysis

The experiment followed a completely randomized
design with three replications. Data analysis was
performed wusing one-way ANOVA. Significant
differences were determined by Duncan’s multiple
range test at P < 0.05. SAS software was used for
statistical analysis.

4. Results and Discussion

4.1. Antioxidant Activity of Individual Antioxidants

The antioxidant activity of individual antioxidants
was evaluated using DPPH and FRAP assays at two
concentration ranges: 50 - 250 uM and 100 - 500 uM for
each compound. The results are shown in Figure 2.

As shown, the antioxidant activity significantly
increased with concentration, regardless of the assay
method used. Quercetin exhibited the highest
antioxidant activity in both methods, followed by
ascorbic acid and resveratrol in the DPPH assay, and
resveratrol and ascorbic acid in the FRAP assay. As
previously mentioned, the high antioxidant activity of
quercetin is attributed to the presence of a hydroxyl
group at C;, a double bond between C, - C;, a carbonyl

group at C, (on ring C), and polyhydroxylated A and B
aromatic rings.

Similar results were observed in a study by Skroza et
al. (8), who reported the highest DPPH free radical
scavenging activity for gallic acid, followed by quercetin,
caffeic acid, catechin, and resveratrol. They also found
that quercetin had the highest FRAP value. In another
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Figure 2. The antioxidant activity of quercetin, resveratrol, and ascorbic acid; A and B, 1,1-diphenyl-2-picrylhydrazyl (DPPH) test; and C and D, ferric reducing antioxidant power
(FRAP) test (Q: Quercetin, R: Resveratrol, A: Ascorbic acid). In both concentration ranges, the difference between concentrations and antioxidant compounds was significant at P
<0.05.
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Figure 3. The antioxidant activity of binary mixtures of antioxidant compounds (Q: Quercetin, R: Resveratrol, A: Ascorbic acid) using 1,--diphenyl-2-picrylhydrazyl (DPPH) (A, B);
and ferric reducing antioxidant power (FRAP) (C, D) tests. In both concentration ranges, the difference between ratios and antioxidant compounds was significant at P < 0.05.

study, quercetin demonstrated the highest antioxidant According to Figure 2, the radical scavenging activity
capacity using the oxygen radical absorbance capacity =~ of ascorbic acid was higher than that of resveratrol.
(ORAC) method among six compounds: Quercetin, However, its reducing power was lower than that of
rutin, morin, naringin, ascorbic acid, and Trolox (2). resveratrol. In another study, ascorbic acid
demonstrated higher DPPH radical scavenging activity
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Figure 4. The antioxidant activity changes by the 1,-diphenyl-2-picrylhydrazyl (DPPH) method for systems containing different concentrations of quercetin, resveratrol, ascorbic
acid, and their binary mixtures in concentration ranges of 50 - 250 1M (A, C, E); and 100 - 500 uM (B, D, F). Some of the error bars are covered by symbols.

than resveratrol (13). Although resveratrol showed
greater reducing power at lower concentrations (50 -
250 uM), the difference in reducing power between
resveratrol and ascorbic acid diminished at higher
concentrations. At 500 uM, the FRAP value of ascorbic
acid was slightly higher than that of resveratrol;
however, this difference was not statistically significant.
In contrast, a study by Pulido et al. (14) reported that
ascorbic acid exhibited a higher reducing power than
resveratrol using the FRAP test, which differs from the
findings of the present study.

4.2. Antioxidant Activity of Binary Mixtures of Antioxidants

To assess the interaction type between binary
mixtures of antioxidant compounds, mixtures were
prepared in two concentration ranges: 50 - 250 pM and
100 - 500 pM for each compound. Initially, the
antioxidant capacity of binary mixtures of Q/R, Q/A, and
R/A was evaluated in ratios of 50/250, 100/200, 150/150,
200[100, and 250/50 pM using DPPH and FRAP assays.
The results are shown in Figure 3.

According to Figure 3, the antioxidant activity
increased with the concentration of quercetin in the Q/R
and QA mixtures, as observed using both assay
methods. This may be attributed to the higher
antioxidant activity of quercetin compared to
resveratrol and ascorbic acid. However, in the R/A
mixture, antioxidant activity increased in the FRAP assay
and slightly decreased in the DPPH assay. In the DPPH
test, the highest antioxidant activity for the R/A mixture
was observed at a concentration of 50/250 pM, whereas
in the FRAP test, the highest activity was found at a
concentration of 250/50 uM.

] Rep Pharm Sci. 2025;13(1): 156437

These results are consistent with the antioxidant
activity of the individual compounds — resveratrol and
ascorbic acid — measured using the DPPH and FRAP
tests. This indicates the higher radical scavenging
activity of ascorbic acid and the higher reducing power
of resveratrol.

In the second step, the antioxidant capacity of the
binary mixtures Q/R, Q/A, and R/A was evaluated at
higher concentrations with the same ratios: 100/500,
200/400,300/300, 400/200, and 500/100 uM, using both
DPPH and FRAP assays. The obtained data were in full
agreement with the results of the first step. That is, the
antioxidant activity of the binary mixtures, using both
DPPH and FRAP methods, was lower than the sum of the
antioxidant activities of the individual compounds
(Figures 4 and 5).

So, the observed effect among the binary mixtures of
Q/R, Q/A, and R/A was antagonism. As previously
mentioned, the antioxidant activity in mixtures of
antioxidants is not always equivalent to the sum of the
activities of the individual antioxidants. In chemistry,
antagonism is defined as a phenomenon where two or
more agents in a mixture produce a lesser overall effect
than the sum of their individual effects (15).

In the first step, concentrations ranging from 50 - 250
uM were used for binary mixtures of antioxidants in
ratios of 1:5, 1:2, 1:1, 2:1, and 5:1. The data obtained for all
ratios demonstrated an antagonistic effect among the
binary mixtures. In the second step, binary mixtures
were tested at the same ratios but at higher
concentrations (100 - 500 pM), and similar antagonistic
effects were observed across all ratios. Additionally, the
binary mixtures were assayed at other ratios and
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Figure 5. The antioxidant activity changes by the ferric reducing antioxidant power (FRAP) method for systems containing different concentrations of quercetin, resveratrol,
ascorbic acid, and their binary mixtures in concentration ranges of 50 - 250 pM (A, C, E); and 100 - 500 pM (B, D, F). Some of the error bars are covered by symbols.

concentrations using both DPPH and FRAP methods. The
results consistently indicated an antagonistic effect
among the antioxidant compounds (Appendix 1 in
Supplementary File). Thus, the antioxidant interaction
among the binary mixtures of Q/R, Q/A, and R/A was
antagonistic across various ratios and concentrations.

Similar results were reported for mixtures such as
Q/A and quercetin/Trolox at a concentration of 5 pM
using the ORAC method (2). In another study, a mixture
of caffeic acid, gallic acid, ferulic acid, and quercetin,
and a combination of this mixture with synthetic
antioxidants such as butylated hydroxyanisole (BHA),
butylated hydroxytoluene (BHT), propyl gallate, octyl
gallate, and tert-butyl hydroquinone (TBHQ), showed
additive effects using the FRAP test (16).

Skroza et al. (8) confirmed an antagonistic effect
between quercetin and resveratrol (1:1) using the FRAP
test and Briggs-Rauscher (BR) oscillating reactions. An
antagonistic effect was also observed in pairs such as
kaempferol/quercetin and myricetin/quercetin at a
concentration of 0.01 mg/mL [ratios (v/v) 20/80, 50/50,
and 80/20] using the DPPH and 2,2-azinobis (3-
ethylbenzothiazoline-6-sulfonic acid (ABTS) methods.
However, these same pairs showed additive effects at
higher concentrations of 0.03 and 0.06 mg/mL using
the DPPH method. Additionally, the
kaempferol/quercetin mixture showed an additive effect
at 0.03 and 0.06 mg/mL using the ABTS method, while
the myricetin/quercetin pair continued to show an
antagonistic effect at these concentrations using the
same method (17).

In another study, the quercetin/tocotrienol mixture
(1:1) at a concentration of 1 pM exhibited a synergistic

effect in a linoleic acid emulsion, but this effect
diminished with increasing concentrations (5 - 10 uM)
(18). Furthermore, a quercetin/BHT mixture (5:1)
demonstrated a synergistic effect using the DPPH
method and was found effective in preserving beef
patties (19). Similarly, mixtures of quercetin/gallic acid,
quercetin/catechin, and quercetin/catechin/gallic acid
showed synergistic effects when tested using DPPH,
FRAP, and ABTS methods (20).

To evaluate the influence of antioxidant ratios on the
antagonistic effect, the difference percentage (D%) was
calculated as follows (Equation 2).

Ay — (A, + A
» — ( 2 100
(Ao + As) 2)

Where A, is the antioxidant activity of the binary

D% =

mixture, and A, and Ay, are the antioxidant activities of
the individual compounds.

The results are shown in Table 1. According to the
table, the difference percent for the Q/R mixture
decreased with increasing quercetin concentration, and
the lowest difference was observed at concentration
ratios of 500/100 M and 250/50 uM, regardless of the
assay method used. Similar results were obtained for the
Q/A mixture at the 100 - 500 pM concentration range.
However, different results were observed in the 50 - 250
uM range. In this range, the lowest difference was
observed at the 250/50 ratio using the DPPH assay and at
the 150/150 ratio using the FRAP assay. Nonetheless, the
difference between the 150/150 and 250/50 ratios was
not statistically significant.
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Table 1. The Results of Antioxidant Activity in Antioxidant Binary Mixtures
Antioxidants R oA R
E T D% T D% E T D%

DPPH results
100/500 17.84+4.21 38.63 -53.81 22.66t1.1 46.43 -51.19 18.37+4.04 38.63 -52.42
200/400 23.54+0.35 49.14 52.1 28.21+0.63 54.58 -48.31 15.24 £1.205 36.6 -58.35
300/300 33.94 +1.75 60.08 -43.5 33.18+1.37 62.84 -47.2 16 +3.23 35.68 -55.14
400/200 37.96 £1.97 64.21 -40.88 37.08+1.58 65.17 -43.1 16+ 0.75 3212 -50.17
500/100 42.43+135 69.76 -39.17 42.05%0.98 69.07 39.11 14.82+2.45 30.13 -50.82
50/250 8.92+0.76 20.87 -57.25 12.17 £2.96 22.05 -44.8 9.73 %112 15.45 37.02
100/200 11.98 £2.14 27.08 -55.73 16.14 £ 0.57 28.15 -42.66 9.03+1.28 16.51 -45.3
150/150 15331 28.81 -46.79 17.57+0.93 31.9 -44.89 718 +1.23 15.5 -53.65
200[100 19.49+0.75 36.24 -46.2 19.85+0.06 37.06 -46.41 9.12+129 16.26 -43.88
250/50 2421+ 0.94 38.08 36.42 23.96+2.16 38.88 -38.36 7.31£1.05 15.06 51.42

FRAP results
100/500 287.8+24.48 572.66 -49.74 241.6 £13.16 585.6 -58.74 13126 +£3.23 431.46 -69.57
200/400 421.4£10.82 747.46 -43.62 383.6+28.12 708.93 -45.89 159 +4.21 389.2 -59.14
300/300 569.4 £39.81 939.2 -39.37 558.8 £29 906.4 -38.34 160.06 +15.72 392.4 -59.2
400/200 712.6 £24.48 1149.86 -38.02 658.4 £21.13 1082.8 -39.19 150.86 +5.89 360.66 -58.17
500/100 852.6 £18.15 1320.66 35.44 798.4+44.59 1273.06 37.28 175.8 £12.64 370.93 -52.6
50/250 166.4 £10.02 377.06 -55.86 153.6 +3.41 294.53 -47.84 74.6 £14.27 169.73 -56.04
100/200 215.46 £1.66 441.33 -51.17 215.73+5.6 361.86 -40.38 84.33+£8.94 180 -53.14
150/150 304.26 +5.66 49533 -38.57 308.4+1.74 432.66 -28.72 103.93+14.08 205.2 -49.35
200/100 337.33+3.84 570.93 -40.91 364.41+4.54 521.2 30.08 109+13 209.73 -48.02
250/50 458.53+6.14 688.26 3337 455.46+5.06 657.6 30.73 117.66 £10.21 221.6 -46.9

Abbreviations: Q, quercetin; R, resveratrol; A, ascorbic acid; E, experimental; T, theoretical; D%, difference percent; DPPH, 1,I-diphenyl-2-picrylhydrazyl; FRAP, ferric reducing

antioxidant power.

Overall, for the Q/A mixture, the differences among
the various ratios using the DPPH test were not
significant. For the R/A mixture, the lowest difference
was recorded at ratios of 400/200 uM and 50/250 uM
using the DPPH method, though in general, the
differences across the ratios were not significant
(Appendix 1in Supplementary File). However, the results
obtained from the FRAP assay for the R/A mixture were
similar to those of the Q/R mixture, with the lowest
differences found at the 500/100 uM and 250/50 puM
ratios.

According to Appendix 1 in Supplementary File,
different patterns were observed for other
concentration levels and ratios in the binary mixtures of
Q/R, Q/A, and R/A.

A comparison between the obtained difference
percent for the concentration ranges of 50 - 250 pM and
100 - 500 pM (Figure 6) did not show a significant
difference for the Q/R mixture using either assay
method (Appendix 1in Supplementary File).

This means that at the same ratio, the difference
percent does not change significantly with an increase
in the concentration of antioxidant mixtures. Therefore,
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in cases where lower antioxidant activity is desired,
lower concentrations of antioxidant compounds can be
utilized.

For the Q/A mixture, the results showed a significant
difference when using the FRAP test, but an insignificant
difference with the DPPH test. The results obtained for
the R/A mixture were similar to those of the Q/A mixture.

As a result, the choice of antioxidant activity assay
method can influence the observed magnitude of
antagonism. The extent of the antagonistic effect
depends not only on the interactions between
individual components, their concentrations, and the
method applied for assessing antioxidant properties
(17), but also on the ratio of antioxidant mixtures.

Additionally, we calculated the correlation between
the DPPH and FRAP methods for both individual
antioxidants and their binary mixtures (Figures 7 and 8).

According to Figure 7, a high correlation (> 0.97) was
observed for individual antioxidants between the DPPH
and FRAP tests. Similarly, the binary mixtures of Q/R and
Q/A demonstrated a strong correlation (> 0.96) between
the two assay methods (Figure 8). However, for the R/A
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Figure 7. The correlation of DPPH and FRAP methods for individual antioxidants of quercetin (Q), resveratrol (R), and ascorbic acid (A) in concentration ranges of 50 - 250 uM

and 100 -500 pM

mixture, a lower correlation was observed. This may be
attributed, as mentioned earlier, to the stronger radical
scavenging activity of ascorbic acid and its
comparatively weaker reducing power relative to
resveratrol. This indicates that the antioxidant
interaction type in the R/A mixture cannot be reliably
predicted using only one antioxidant activity assay
method.

According to literature, several mechanisms have
been proposed to explain the antagonistic effect
observed in complex mixtures. These include: The
regeneration of the weaker antioxidant by the stronger
one, the formation of complexes or adducts between
antioxidants, antioxidant polymerization that reduces
activity, irreversible reactions of free antioxidant

radicals (e.g., with oxygen), and other undefined mutual
interactions between antioxidants (21).

In line with these explanations, the proposed
mechanism for the antagonistic effect between
quercetin and resveratrol involves undefined mutual
interactions (8, 22, 23). Additionally, the observed
antagonism between quercetin and ascorbic acid in the
DPPH assay has been attributed to the regeneration of
ascorbic acid by quercetin through hydrogen atom
donation (24). Another study using ABTS and ORAC
assays suggested that irreversible reactions of free
antioxidant radicals — such as reactions with oxygen
leading to radical loss — may explain the antagonism
observed between quercetin and ascorbic acid (25).
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Figure 8. The correlation of DPPH and FRAP methods for binary mixtures of quercetin/resveratrol (Q+R), quercetin/ascorbic acid (Q+A), and resveratrol/ascorbic acid (R+A) in
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Therefore, it can be concluded that the method used
to assess antioxidant activity affects both the magnitude
and the likely mechanism of the antagonistic effect.
Furthermore, the mechanism of antagonism between
ascorbic acid and resveratrol remains unclear. It may
involve regeneration of less effective antioxidants by
stronger ones or other undefined mutual interactions.

Overall, based on the results of this study, a 5:1 ratio
of stronger to weaker antioxidants is recommended to
achieve the lowest level of antagonism in binary
mixtures of Q/R, Q/A, and R/A. This is particularly
important for preserving antioxidant capacity in
formulations intended for skincare or the development
of functional foods.

5. Conclusions

The results of this study demonstrated the superior
antioxidant activity of quercetin compared to ascorbic
acid and resveratrol. An antagonistic effect was observed
in binary mixtures of Q/R, Q/A, and RJA across various
ratios and concentrations, using both DPPH and FRAP
methods. The magnitude of the observed antagonism
depended on multiple factors, including the mutual
interactions of individual components, their
concentrations, the assay method used, and the ratio of
antioxidant mixtures.

Notably, a 5:1 ratio of stronger to weaker antioxidants
resulted in lower antagonism, making it a promising
strategy for optimizing antioxidant retention in
formulations. These findings have practical implications
for selecting suitable antioxidant mixtures in the
cosmetic, pharmaceutical, and food industries —

] Rep Pharm Sci. 2025; 13(1): €156437

particularly in the design of functional foods, dietary
supplements, and stabilization of fats, oils, and other
food systems.

However, the precise mechanisms underlying these
antioxidant interactions require further investigation.
Additionally, in practical applications involving real
matrices such as food products or cosmetic creams, the
composition and properties of the matrix may influence
the type and degree of antioxidant interactions.
Therefore, matrix effects should be carefully considered
when selecting and applying antioxidant mixtures.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML|.
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