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Abstract

Context: Different factors such as the site of infection, the etiological agent, and the immune system can modify the antifungal
response of the host. Differences in Sporothrix schenckii strains’ virulence and the host’s immune competency may be involved in
the development of sporotrichosis. Nevertheless, the mechanisms related to the disease’s development and progression remain not
fully elucidated. Nowadays, no model outweighs the usefulness of mice in biological studies. In these models, transient controlled
immunity is created by depressed inflammatory cells during the acute phase of the disease. This is also related to nitric oxide-
induced T-cell apoptosis and the lack of a mitogen response.
Evidence Acquisition: The recognition of the lipid components of S. schenckii can induce and prolong inflammation. This recogni-
tion occurs mainly through the Toll-like receptor (TLR)-4 or the inflammasome. At the same time, TLR-2-mediated identification of
fungal exoantigen can serve as an immune evasion process, continuing and worsening the infection. Cell-mediated immune mech-
anisms have a predominant influence on modulating the clinical expression of sporotrichosis, which is mainly related to Th1/Th17
immunity.
Conclusions: In this study, we aimed to explore the innate and acquired immune mechanisms involved in sporotrichosis, as well
as the most commonly used animal models for experimental studies.
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1. Context

Sporotrichosis is a common subcutaneous mycosis in
Latin America, acquired through traumatic inoculation of
the fungus via contaminated organic material. The host’s
immune system plays a crucial role in responding against
the disease and reducing the progression of the infection.
Immune cells, including neutrophils, macrophages, and
numerous innate and acquired defense mechanisms inter-
act with each other for recognizing and orchestrating coor-
dinated immune responses against the pathogen (1).

The innate immune system consists of several specific
cells representing the first line of defense against many
fungal infections including sporotrichosis. These innate
immune mechanisms include a variety of cells and pattern
recognition receptors that are important to control sys-
temic infections (2). Different factors such as the site of the
infection, the causal agent, and the immune system can
modulate the antifungal reaction of the host. Infectious
agents such as Sporothrix sp. benefit from the resources
provided to them by the host as long as the damage suf-
fered from the immune system is not strong enough to af-
fect the viability of the microbe (3). Here, we investigated

the main immune mechanisms against sporotrichosis.

2. Evidence Acquisition

2.1. The Importance of the Innate Immune System in Sporotri-
chosis

The innate immune system allows distinguishing the
host’s cells (self) from foreign structures (non-self). The
system is the first line of defense against external, mostly
pathogenic, agents (3). A properly functioning immune
system is necessary for decreasing predisposition to nu-
merous infections (4). The main mechanisms of the in-
nate immunity against sporotrichosis, determining sus-
ceptibility to the infection, will be reviewed.

Several studies have been conducted in congenitally
athymic mice (nu/nu) to assess the role of T-cell mediated
immune responses in sporotrichosis, showing greater sus-
ceptibility and death rates in the infections caused by S.
schenckii (5). In animal models, S. schenckii infection was
shown to be promptly limited by effectively and persis-
tently controlling the fungal load.

S. schenckiisensu stricto induced the release of several
proinflammatory cytokines in mice experimental models
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(6), including TNFα and IL-6, at the infection site 24h af-
ter inoculation. However, in the case of S. brasiliensis, cy-
tokines’ levels remained similar to uninfected mice. In Fig-
ure 1, we illustrated the hypothetical mechanisms of the in-
terplay between Sporothrix sp. and the host’s immune sys-
tem.

The increased virulence of S. brasiliensis, as well as the
decreased activity of the innate immune system and re-
duced Th1 response may promote the advanced stage of
the infection. T cells favor Th17-mediated immune ac-
tivity to control fungal infections while reducing exces-
sive and damaging inflammatory responses through in-
ducing T regulatory (Treg) cells (7). These results showed
that S. brasiliensis had greater virulence compared with S.
schenckii and S. globosa; on the other hand, S. mexicana and
S. pallida (formerly S. albicans) showed low or no virulence
(7).

2.2. Importance of Reactive Oxygen and Nitrogen Species

Macrophages are specialized cells against different
infectious agents, including fungi. Macrophages’ func-
tions involve phagocytosis, antigen processing and pre-
sentation, and ultimately linking the innate immunity
with adaptive immunity (8). In addition to phagocytosis,
macrophages produce substances such as enzymes, com-
plement components, and coagulation factors (9), as well
as potent inflammatory mediators like reactive oxygen
species (ROS) and reactive nitrogen species (RNS) (10). The
relevance of these ROS (mainly hydrogen peroxide, H2O2)
in the microbicidal activity of macrophages has been sug-
gested in previous studies (11); moreover, macrophage ac-
tivity is suppressed by free radicals, as well as superoxide
dismutase (related to ROS) and catalase and NO (related to
RNS) (12).

An imbalance has been observed between immune
responses to infections and the virulence of the agent.
This imbalance is mediated through the NO released by
macrophages; one consequence of which includes lower
susceptibility to the infection (13).

2.3. Importance of Pattern Recognition Receptors

Importance of pattern recognition receptors (PRRs)
are classes of innate immunity receptors, that are often
produced during cellular damage or early phases of infec-
tions. These include Toll-like (TLRs) and NOD type receptors
(RTNs). The primary function of PRRs is the recognition of
various pathogens, modulating stress signaling (14).

2.4. Importance of TLRs and Phagocytosis

TLRs were first identified in Drosophila melanogaster
and suggested to control the activity and progression of

several mycoses (14). The engagement of TLRs with their
agonists favors the dimerization of their extra and intra-
cellular domains, leading to signal transduction through
the myeloid differentiation primary response protein 88
(MyD88) and the activation of adaptive immune responses
(15). Immune recognition of antigens on the surface of
most fungi is mainly carried out by TLR4 and, albeit in a
smaller proportion, TLR2/1, and TLR2/6 heterodimers. Dur-
ing fungal infections, the functions of TLRs can be antago-
nistic but complementary. TLR4 regulates the Th1 response
and influences the development of Th17, while TLR2 pro-
motes the differentiation of Treg cells by regulating Th1
and Th17 activities (16, 17).

Phagocytosis constitutes the first line of immune de-
fense, allowing for the sampling of antigens and the pro-
cessing of invading pathogens (8). Phagocytosis is directed
by several fully identified receptors including FC receptors,
integrins, and complement receptors. Moreover, other re-
ceptors may be involved in the binding of antigens, poten-
tiating their internalization (8). Among PRRs, mannose re-
ceptor (MRs, like Dectin-1, are phagocytic receptors with no
inflammatory signaling; however, they co-modulate these
signals and enhance phagocytosis in combination with
other PRRs (such as TLRs 3, 7, 8 and 9) (18). Recent stud-
ies have shown the role of TLR2 in potentiating S. schenckii
phagocytosis and inducing the production of inflamma-
tory mediators by macrophages (19, 20).

2.5. Importance of RTNs and the Inflammasome

RTNs are cytosolic PRRs forming pen-
tameric/heptameric protein structures known as inflam-
masomes. Infectious agents that surpass the host’s surface
receptors are recognized by RTNs (21, 22). Inflammasome
acts as a regulator of IL-18-mediated inflammation, con-
tributing to the defense against infectious diseases; these
mechanisms may enhance the antimicrobial characteris-
tics of inflammatory cells, mainly phagocytes, activating
Th1/Th17 responses (23).

In a recent report by Goncalves et al. (24), the role of in-
flammasomes in S. schenckii infection was determined, in-
dicating that the inflammasomes assembled with NLRP3,
an intracellular sensor that detects a broad range of mi-
crobial motifs (25), play a protective role against the in-
fection. This function is related to the activation of pro-
inflammatory mediators and IL-1/IL-17 induced T helper re-
sponses, linking the recognition of the fungus via innate
immunity receptors to subsequent adaptive immune re-
sponses (25).

2.6. Importance of Macrophage Activation Profile

Macrophages evolve into two types of phenotypes (26)
essential to adequate immune responses against several
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Figure 1. Summary of Sporotrix sp. and the host’s immune system interplay. Toll-like receptors (TLR) 2 and 4 recognize S. schenckii-derived mannans. The membrane-bound C-
type lectins dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), macrophage-inducible C-type lectin, and macrophage mannose receptor (MR) recognize mannose-
rich fungal structures. Moreover, the NOD-like receptor; NLRP3 (nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3), forms an
inflammasome complex in combination with ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) and caspase 1, leading to interleukin-1β
(IL-1β) and IL-18 production, contributing to the host’s immune defense against sporotrichosis.

pathogens. These include activated “classic” (M1) and “al-
ternative” (M2) cell types. The first may cause tissue dam-
age and directly influence sporotrichosis through “pro-
ducing high levels of IL-12and regulating the activity of
nitric oxide (NO) synthase (27). On the other hand, M2
macrophages produce high amounts of IL10, regulate the

activity of the arginase I enzyme, and promote tissue re-
pair by inducing angiogenesis and the remodeling of the
affected tissue (28). In an experimental model of sporotri-
chosis, both M1 and M2 macrophages were identified dur-
ing the active phase of the disease. After stimulation with
a cell wall-derived peptide-polysaccharide, the production
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of IL-10 and TFG-β increased during the infection (29).

2.7. Importance of Dendritic Cell (DC) Activation Profile

Activation of DCs regulates the interaction between
pro- and anti-inflammatory mechanisms necessary for im-
mune regulation (30). The specific function of these cells
in sporotrichosis has not been entirely elucidated. Uenot-
suchi et al. (30) showed that DCs derived from human
monocytes expressed a unique cellular function when they
were exposed to yeasts, and the conidia of S. schenckii
derived from patients with either visceral or cutaneous
sporotrichosis.

In another study, bone marrow-derived dendritic cells
(BMDCs) were stimulated with either complete fungi or
the exoantigen of S. schenckii; the recognition of these anti-
gens by DCs (plasticity) triggered T cell-mediated immune
mechanisms (31).

2.8. Importance of Interactions Among Immune Responses in
Sporotrichosis

The interplay between innate and adaptive immune
responses is important for more robust and directed re-
sponses leading to the control of infectious agents. Many
specific antifungal cellular and humoral immune path-
ways are directed against S. schenckii, playing vital roles in
protecting the host against the fungus (32).

The severity of sporotrichosis depends mainly on the
extent of immune responses; immunosuppressed subjects
develop disseminated clinical forms whereas immuno-
competent subjects generally develop localized manifesta-
tions (24). This is probably due to variable T-cell mediated
immune responses, which are essential to define the clini-
cal severity of sporotrichosis (33).

IL-12 induces the proliferation of T cells and natural
killer (NK) cells and is an essential mediator of immune re-
sponses against not only viruses but also fungi as shown
by the growing evidence on the effects of some fungi such
as S. schenckii on the maturation of NK cells and the pro-
duction of proinflammatory cytokines (34). The develop-
ment of Th1 immunity is primarily mediated by IL-12 and
IFNγ (27). On the other hand, TNFα is an essential cytokine
with a critical function in several acute and chronic inflam-
matory diseases (35). This can be explained by its ability to
induce proinflammatory cytokines, mainly IL-1 (36).

IFNγ is a potent trigger for activating macrophages,
and its local production in pathological conditions pro-
longs the course of diseases (37). Also, the macrophages
activated by IFNγ produce different cytokines that con-
trol the progression of infectious agents; among these are
TNFα, as well as IL6 and 12. IFNγ also induces NO pro-
duction by stimulating macrophages and modulates T-cell

proliferation and function mainly through regulating IL-12
production (38). Also, IFNγ improves the antigen presenta-
tion activity of macrophages and promotes different stim-
uli to increase the activity of Th1 lymphocytes, thereby en-
hancing not only innate but also adaptive immunity. IL4
and IL10 augment the humoral immunity via stimulating
specialized cells such as eosinophils and mast cells, induce
the differentiation of B cells to plasma cells, and finally trig-
ger the production of IgE. In the initial phase of sporotri-
chosis, increased levels of IL4 may delay the onset of the
Th1 response by inhibiting the production of IFNγ while in
the later stages of the disease, the infection can be drasti-
cally limited by the intervention of cytokines such as IL4
(39). This initial increase in IL4 levels is maintained during
the advanced stages of the disease, which in combination
with elevated IgG titers, it reflects the involvement of Th2
immunity in advanced stages of sporotrichosis, at least in
animal models (40).

2.9. Importance of Apoptosis and Th17 Response in Sporotri-
chosis

Apoptosis is a mechanism for cellular death, in which
cells are removed without an evident sign of inflamma-
tion. Apoptosis may follow an infectious process either as
an escape mechanism for the infectious agent or a strat-
egy to prevent the spread of the infection (41). Fernandes
et al. (42) showed that the immunosuppression associated
with sporotrichosis and susceptibility to a systemic disease
in a murine model were probably related to an increase in
NO production, leading to the apoptosis of splenic cells,
the suppression of the immune response, and the high
production of IL-10 and TNFα, as observed in several in-
fectious diseases including sporotrichosis (43). The above-
mentioned findings seem to explain the depletion of cellu-
lar immunity observed in the acute phase of sporotrichosis
(44).

2.10. Importance of the Th17 Response in Sporotrichosis

Infection-induced apoptosis is involved in the induc-
tion and development of Th17 responses (45); however, the
role of this pathway in sporotrichosis pathogenesis is not
clear yet. The essential role of Th17 cells in the immunopro-
tection against agents such as bacteria and fungi, as well
as the production of IL17, which is necessary for homeosta-
sis of the mucosa, has been shown in previous studies. IL17
also increases the recruitment of neutrophils and Th1 cells
and induces the production of proinflammatory cytokines
by epithelial cells (46).

A previous study evaluated the immunogenic poten-
tial of the fungus (S. schenckii) and its exoantigen. The
exoantigen was sufficient to induce the release of proin-
flammatory cytokines (31). The exposure of BMDCs to the
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entire fungus induced the release of significant levels of IL-
12 and IL-6; however, the release of TGFβ was minimal. IL-23,
which is mainly induced by the exoantigen of S. schenckii,
in addition to inducing high levels of IL-6 and decreasing
IL-12, which inhibits the differentiation of Th17 cells, re-
sults in an intense release of IL-17 in the culture medium
of BMDCs and splenic lymphocytes (31).

3. Conclusions

The recognition of S. schenckii via TLR4 leads to potent
inflammatory reactions. TLR2 regulates inflammation and
may represent an escape mechanism of the fungus. Simul-
taneously, the activation of inflammasomes and apopto-
sis by sporotrichosis regulates immune responses, mainly
Th17-induced reactions, against S. schenckii. Nevertheless,
these aspects are still under study. Currently, the impor-
tant points related to the innate and adaptive immune re-
sponses against the infectious agent are under evaluation
both in vivo and in vitro to characterize the behavior of the
fungus in different experimental models.
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