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The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction
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Context: Stem cell therapy, especially in the segment of mesenchymal stem cells (MSCs), is one of the most promising areas of regenerative 
medicine.
Evidence Acquisition: According to research conducted by various researchers, Wharton’s Jelly mesenchymal stem cells (WJMSCs) have 
several advantages compared to others sources, in regenerative medicine: WJMSCs are more primary cells; WJMSCs can be easily isolated 
and without invasive procedures; WJMSCs have no ethical problems; WJMSCs are more cost effective than other sources of MSCs. Also, 
WJMSCs were demonstrated to express stem cell mesenchymal markers.
Results: Similar to bone marrow MSCs, WJMSCs express major histocompatibility complex (MHC) class I molecules.
Conclusions: Although the aforementioned challenges must still be addressed, the potential of WJMSCs in skin regenerative clinical 
treatments is promising.
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1. Context

1.1. What is Stem Cell?
Stem cells are self-renewing and undifferentiated cells 

that have the potential to differentiate into various func-
tional cell types (1-4). Self-renewal, the capacity to generate 
identical daughter cells, without any differentiation, is nec-
essary to preserve stem cell pools in different tissues (3, 5). 

1.2. Stem Cells Classification

1.2.1. Classification on Source Origin
Stem cells could be classified into two main types, based 

on their source of origin: Embryonic, which derived from 
the inner cell mass of preimplantation embryo and has 
the ability of constructing all three embryonic germ lay-
ers, and Adult, scattered in various tissues and organs, 
and has the capability of producing at least one type of 
differentiated functional progeny (4, 6-9). Although the 
latter were thought to have a limited capacity, recent evi-
dence have attested an extensive capability to generate 
cells of the three different lineages, like the former (10-12).

1.2.2. Classification on Potential of Differentiation
Another possible classification for stem cells is based 

on their potential range of differentiation (3), which, in 
turn, are subtyped into totipotent, pluripotent, multi-
potent, and unipotent. Totipotent cells, such as zygote 
and early blastomers (1‒3 days from oocyte fertilization) 
have the capacity to generate all types of cells, while 
pluripotent cells, such as inner cell mass of blastocysts 
(4‒14 days after oocyte fertilization) could produce all 
cell types, except extraembryonic trophoblast lineage 
(3, 8, 12-14). Mouse and human oogonial stem cells ex-
press high levels of telomerase catalytic subunit, which 
is a hallmark feature of pluripotent and germ cells 
(15). Also, multilineage-differentiating stress-enduring 
(MUSE) cells are pluripotent cells that have ability to 
differentiate into cell types from all three germ layers, 
from a single cell (16). Multipotent stem cells have the 
ability to differentiate into all cell types, within one par-
ticular lineage (13, 14), while unipotent stem cells are 
defined as cells that have the competency of differenti-
ating into only one lineage (3).
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2. Evidence Acquisition

2.1. Structural Properties and Characterization of 
Multipotent Stem Cells

Multipotent stem cells (MSCs) have characteristics simi-
lar to others cell and have a significant role in develop-
ment, tissue, defense, and repair, such as neural and 
cardiac disorders, which made them a familiar subject 
of study, with enormous productivity in the upcoming 
of medical sciences (17, 18). Although the MSCs could pro-
duce other lines of cells, there are several limitations in 
their differentiation capacity. For example, MSCs in the 
brain can differentiate into disparate neural cells and 
glia or hematopoietic stem cells, which have the capacity 
of differentiation into most of the blood cells. However, 
they do not have the ability to produce brain cells. Fur-
thermore, bone marrow contains MSCs, which can differ-
entiate into the whole types of blood cell (18). Due to the 
mentioned limitations, MSCs are classified as adult stem 
cells; the most well-known MSCs, namely mesenchymal 
stem cells have the ability to constitute various numbers 
of cells, such as bone, muscle, cartilage, fat, etc., under 
specific conditions (19, 20). The MSCs can fundamentally 
create particular cell types. These kinds of stem cells are 
different from pluripotent stem cells, which can produce 
nearly all cell types, or totipotent stem cells, which can 
differentiate into any cell (21). Pluripotent stem cells es-
sentially specialize into MSCs, and formerly MSCs pro-
duce cells with a definite target and role (17, 19-22). In re-
gard to the application of MSCs in treatment protocols, 
expression of chemokine receptors in these cells made 
them respond to the increasing amount of chemokines 
produced in injured tissue, and their further migration 
to the tissue of target (23). Several applications of MSCs 
in animal models are as follows: spinal cord injury, bone 
fracture, autoimmune disorders, rheumatoid arthritis, 
and hematopoietic defects (24-26). This area of research 
makes another approach in stem cell therapy; in this 
field, the cells are transplanted to another case, which 
represents a different allogeneic host, instead of “self”. 
Even though this way of diseases management is still con-
tinuing, it is worth noting to protect tissues before organ 
transplantation. Besides their use in tissue regeneration, 
mesenchymal stem cells are employed for drug monitor 
(17). The MSCs have been considered as a patient-specific 
drugstore for injured tissue (27). Effortless differentiation 
ability and commitment made mesenchymal tissue cells 
a noticeable issue of discussion, in advance. Researchers 
initially supposed MSCs are recognized to derive as peri-
cytes, which have the ability of surveying their domain, 
act as responder to limited stimulants with many useful 
interventions (28). Easy access and adaptation declare an-
other beneficial aspect for using MSCs in therapeutic pro-
tocols (29). Recently, neural cells, as main forms of MSCs, 
are valued in research studies, owing to their differentia-
tion potential into nerve cells, without revenue level, as it 

could be seen in other cells, such as blood. Their isolation 
possibility from adult and fetal brain tissues mean that 
these cells can differentiate into new nerve cells, which 
in turn makes them a suitable choice for brain and spinal 
cord injuries treatment (17, 30, 31). Meanwhile, MSCs are 
separated from pluripotent stem cells; by now, these cells 
have incompletely differentiated with further specifica-
tion during their growing. Multipotent adult stem cells 
seem mainly beneficial in transplantation, owing to easy 
harvesting, extensive expansion, and also, no immune 
rejection, owing to having immunomodulatory function 
and ethical problems (32). Some MSCs have trophic prop-
erties through expression of growth factors and chemo-
kines for inducing cell proliferation and angiogenesis, 
and mitogenic proteins (for example, transforming tu-
mor growth factor-alpha (TGF- α); TGF-α, TGF-β, hepatocyte 
growth factor (HGF), epithelial growth factor (EGF), basic 
fibroblast growth factor (bFGF) and insulin-like growth 
factor-1 (IGF-1) to enhance fibroblast, epithelial and endo-
thelial cells division (33-35) and strength the endothelial 
cell line and set off angiogenesis, through vascular endo-
thelial growth factor (VEGF), IGF-1, EGF andangiopoietin-1 
(36). An anti-inflammatory action is one of the other ben-
efits of MSC. The MSCs have compound response mech-
anisms amongst the different immune cells, through 
production of anti-inflammatory proteins in reaction to 
inflammatory molecules, including interleukin-1 (IL-1), 
IL-2, IL-12, tumor necrosis factor-α and interferon-gamma 
(37). Eventually, anti-apoptotic properties, by producing 
IGF-1 and IL-6 for up-regulation of Akt (protein kinase B) 
and nuclear factor kappa-light-chain-enhancer of activat-
ed B cells, may constitute another advantageous aspect 
for MSCs, as antiapoptotic agents (17, 38). 

2.2. Wharton’s Jelly Multipotent Stem Cells 
The MSCs, under specific culture conditions, hold the 

ability to differentiate into a variety of lines, such as bone 
(39), skin (40), cartilage (41), adipose (42), endothelium 
(43), muscle (44), and neuronal cells (45). The MSCs have 
various sources, including adipose tissue, muscle, skin, 
bone marrow, Wharton’s Jelly, and synovial joint (46). 
Mitchell et al. (2003) differentiates MSCs of Wharton’s 
Jelly (WJMSCs) in low serum medium, containing FGF 
into neurons and glial cells (47). Troyer and Weiss (2008), 
while studying the immunological properties, found 
that transplantation rejection of undifferentiated hu-
man WJMSCs (h-WJMSCs) was not possible (48). Human 
WJMSCs could be induced to form other cell lines, such 
as neurons and glial cells (47), germ like cells (49), en-
dothelial (50) and insulin secreting cells (51). Regarding 
bone marrow mesenchymal stem cells (BMMSCs), due to 
reduced differentiation potential of MSCs, with increas-
ing age of the donor, researchers seek other sources of 
MSCs, including WJMSCs. According to investigations 
conducted by various researchers, WJMSCs have advan-
tages compared to others sources: 1) WJMSCs are more 
primary cells; 2) WJMSCs can be easily isolated and with-
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out invasive procedures, 3) WJMSCs have no ethical prob-
lem; 4) WJMSCs are more cost effective than other sources 
of MSCs (52). The WJMSCs express stem cell mesenchymal 
markers (CD44, CD105), whereas they do not express the 
hematopoietic markers (CD34, CD45) (53). Similar to 
bone marrow MSCs, WJMSCs express major histocompat-
ibility complex (MHC) class I molecules (such as human 
leukocyte antigen (HLA)-A, -B, -C), while they do not ex-
press MHC class II (HLA-DR) on their cell surface (54, 55). 
In recent years, MSCs derived from umbilical cord matrix 
Wharton’s Jelly have attracted much interest. Wharton’s 
Jelly is a mature mucous tissue and the main component 
of the umbilical cord, connecting the umbilical vessels 
to the amniotic epithelium. Umbilical cord derives from 
extra-embryonic or embryonic mesoderm; at birth, it 
weighs about 40 g and measures approximately 30–65 
cm in length and 1.5 cm in width (56). Individual differ-
ences are observed within newborn babies. Fong and 
colleagues characterized Wharton’s Jelly stem cells and 
found the presence of both embryonic and MSCs, target-
ing this source, as unique and of valuable use for clinical 
applications. The WJMSCs can be cultured with little or 
even no major loss trough at least 50 passages, poor capa-
bility to differentiate into adipocytes, shorter doubling 
times, compared to BMMSCs (57). The WJMSCs are derived 
from the cushioning matrix between the umbilical blood 
vessels, rather than from umbilical blood (58). The cluster 
of differentiation 73 (CD73), CD90, CD105 and HLA class I 
are positive, whereas CD45, CD34 and HLA class II are neg-
ative. Researchers confirmed them to differentiate into 
endothelial cells (59) after the addition of VEGF and bFGF 
to cultures, which are critical to cutaneous repair.

2.3. Wharton’s Jelly Multipotent Stem Cells and 
Skin Reconstruction 

The MSCs have been shown to possess a strong ability to 
improve tissue damage in response to skin injury, by con-
tributing to collagen deposition (60), wound contraction 
(61), angiogenesis (62), regeneration of skin appendages, 
and enhanced growth of epidermal cells (63). Currently, 
most of the studies related to MSCs in clinical treatments 
are on BMMSCs; only limited studies mentioned the ap-
plication of WJMSCs. However, the process of obtaining 
the umbilical cord-derived MSCs is much easier and does 
not harm the donor, compared with that of BMMSCs. 
Similar to BMMSCs, MSCs derived from Wharton’s Jelly 
can adapt to the culture conditions of the dermal equiva-
lents (DEs), suggesting that WJMSCs confer a therapeutic 
benefit by supporting the regeneration of the dermal 
compartment (40). Interestingly, a small population of 
WJMSCs coexpresses the mesenchymal marker vimentin 
and the epithelial marker pan-cytokeratin (CK). By con-
trast, BMMSCs are CK-negative after isolation and on DEs. 
Compared with BMMSCs, WJMSCs can survive on DEs and 
can adapt more easily to the culture conditions of the 
skin. Therefore, WJMSCs can promote skin epithelization, 
vasculogenesis, and collagen deposition, by secreting 

a number of soluble factors, during the wound healing 
phase. Therefore, WJMSCs can be used as an interesting 
and promising tool to regenerate skin wounds. The res-
toration of cutaneous appendages, after a severe skin in-
jury, which is related to the function of the regenerated 
skin and affects the quality of life, may be an important 
function of WJMSCs during skin repair. The regeneration 
of sweat glands, after deep burns, has been an unresolved 
challenge. To address this problem, our group previously 
induced BMMSCs to acquire the phenotype of sweat gland 
cells in vitro and then transplanted them into fresh skin 
wounds, made by excising the anhidrotic scars of five pa-
tients after their deep burn injuries were healed (64). The 
MSCs transformed into sweat gland cells and facilitated 
the recovery of functional sweat glands. This phenome-
non may help address the problem of sweat gland deple-
tion in patients surviving extensive deep burns (64). The 
WJMSCs, in a specific induction system, may hopefully dif-
ferentiate into sweat gland cell-like cells. Recently, WJM-
SCs were successfully induced to differentiate into sweat 
gland cells in vitro (65). Studies indicated that WJMSCs 
can differentiate into sweat gland-like cells, via a novel 
and feasible system that is more effective than our previ-
ous method (64). The WJMSCs, as a novel source of stem 
cells, can differentiate into sweat glands, for further re-
generation of the epidermis and skin appendages. 

Classification of Stem
Cells based on

Source of origin

Embryonic   Adult         Totipotent   Pluripotent     Multipotent    Unipotent

Difference Action
Potential

Figure 1. Stem Cells Classification

Figure 2. Umbilical Cord
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Figure 3. Isolation and Culture of Wharton’s Jelly Mesenchymal Stem Cells From Umbilical Cord

Figure 4. Primary Wharton’s Jelly Mesenchymal Stem Cells Culture

3. Results
As a challenge that WJMSC transplantation has not yet 

been approved by the Food and Drug Administration 
and that clinical trials of MSC transplantation, showing 
no adverse events, have not yet reached the 10-year mark, 

WJMSCs have not been extensively used for clinical thera-
pies. In addition, a number of challenges and side effects 
in WJMSC-based therapy remain to be addressed. First, the 
umbilical cord is an allogeneic tissue for the recipient. The 
second problem is an ethical one. Although the umbilical 
cord is a disused organ, both the donor and the recipient 
have the right of informed consent. Third, a complete de-
tection system, to test any potential disease risk in donors, 
has yet to be established. Fourth, the isolation and further 
expansion of primitive MSCs probably have several un-
certain factors, such as the use of animal serum and the 
most common culture method in vitro, which should be 
avoided in clinical-grade therapy to prevent cell contact 
with xenogeneic proteins. Fifth, potential long term risks 
associated with MSC therapy that may not have been ob-
servable within a short period, after administrations have 
recently been confirmed in preclinical studies. These risks 
include potential maldifferentiation, immunosuppres-
sion and malignant tumor growth, which are the primary 
safety concern, as well as the promotion of tumor growth, 
when the treatment was systemically administered into 
animals with coexisting malignancy (66, 67). Lastly, as 
products of cell therapy, product consistency, cell stabil-
ity, and toxicity should also be considered.
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4. Conclusions
Stem cell therapy is one of the most promising areas of 

regenerative medicine, and a number of such therapies 
are now under development by academic and industrial 
groups. As the technology of cell therapies has advanced, 
regulatory systems, to monitor their use, must be estab-
lished. The general strategy for many adult stem cells and 
all pluripotent stem cell therapies is the scale up of un-
differentiated stem cell production. After differentiation 
into a specific cell type and delivery to patients, the cells 
may reside indefinitely. Given that the signal pathway for 
MSC recruitment and repair is not clear, future studies 
need to be conducted to strengthen the mechanism and 
establish a series of criteria for the donor and the recipi-
ent. Furthermore, MSC banking, which can support the 
successful establishment of umbilical cord blood bank-
ing, should be set up. Although the aforementioned chal-
lenges must still be addressed, the potential of WJMSCs in 
skin regenerative clinical treatments is promising.
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