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Abstract

Skin is the largest organ in vertebrates that is of great importance and performs as a protective barrier against the external world. It
serves various functions such as protecting against external insults, fluid homeostasis, self-healing, and sensory detection. Skin dis-
orders impose major financial and social burden. Therefore, the regeneration potential of the skin is an important area of research
in tissue engineering (TE). This potential is due to the stem cells; they play a vital role in the skin regeneration process, since one of
the main characteristics of the stem cells is their ability to differentiate into the organ specific specialized cells. Numerous factors
such as growth factors, topography, etc. are involved in stem cell differentiation. In the current study, primary human keratinocytes
were isolated from the foreskin samples and cultured. Then, the substrate was developed using PDMS (polydimethylsiloxane) silicon
following keratinocyte fixation. This substrate can be used in further stem cell culture and differentiation studies.
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1. Introduction

Skin is the largest body organ in vertebrates and plays
a vital role in various functions; it serves as an interface
with the external environment, and maintains key home-
ostatic functions during the lifespan (1, 2). Skin regenera-
tion is a significant domain of research in tissue engineer-
ing (TE), particularly for massive skin loss cases, where ex-
isting treatments are not yet able to induce permanent
complying skin regeneration (3). The regeneration abil-
ity of human skin is currently well accepted, but the ques-
tion for researchers and clinicians is how to restrain this
innate potential to treat cutaneous injuries and diseases or
disorders. The skin is a highly complicated and dynamic
system consisting of numerous cell types and matrix com-
ponents. Multiple stem cell populations are recognized
in skin and these cells act a pivotal role in skin develop-
ment, repair, and homeostasis. In general, stem cells are
defined by their capability to self-renew and their capacity
to differentiate into function-specific daughter cells. These
progenitor cells are isolated from all skin layers (epider-
mis, dermis, and hypodermis) and have sole complemen-
tary roles in maintaining the skin integrity. The skill to un-
derstand and regulate these stem cell populations to pro-
mote skin regeneration is where the promise of regenera-
tive medicine lies on (2).

Stem cells are known as basic cells that are primarily

unspecialized and can generate several cell lineages (4),
with 3 particular characteristics as follows: 1- Self-renewal,
which is the most crucial property of a stem cell; i e, divi-
sion resulting in similar cells; 2- Specialized cells; the abil-
ity to regenerate the tissue in which it is located; and 3-
Plasticity, which is the ability to generate other cell types
different from those of the original tissue, and make stem
cells (4, 5). From the potency point of view, they can
be classified into 5 groups including totipotent (the zy-
gote), pluripotent (inner cell mass of the blastocyst), multi-
potent (mesenchymal/hematopoietic stem cells), oligopo-
tent, and unipotent (tissue specific stem cells) (6). On the
other hand, they are divided into 2 main groups: embry-
onic stem cells and adult stem cells available in the blasto-
cyst (the inner cell mass of an embryo 5 days after fertiliza-
tion of the egg by the sperm) and come from the formation
of the fetus, respectively. They are responsible for repair-
ing damaged tissue composed of cells in more differenti-
ated stages (5). Although the adult epidermis basal layer
contains stem cells known for years, it is not obvious yet
whether all cells are stem cells or just a small number of
them exists within this layer. The epidermal proliferative
unit (EPU) covered with a hexagonal surface cell, is a bed for
10 firmly packed basal cells yielding a pile of increasingly
larger and flatter cells. The hypothesis that there is a self-
renewing stem cell per EPU and that the other basal cells
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are so-called transit-amplifying (TA) is derived from this (7).
A wide variety of environmental factors contribute to

the overall control of stem cell behavior (8). Growth fac-
tors are one of the factors used to differentiate stem cells
in vitro. The ongoing prevalent method to differentiate
stem cells is the use of culture medium supplemented with
enough amounts of growth factors. But, Brownian mo-
tion of growth factors in the medium leads only a small
amount of them to reach biological signal pathway cell
receptors. Hence, even if a large amount of growth fac-
tors is added to culture medium, only a small portion is
involved in the differentiation of stem cells (9). Moreover,
stem cells can be stimulated by chemical or topographical
cues (10). At the moment, it is believed that stem cells can
sense and initiate an appropriate response to the physico-
chemical properties of their extracellular matrix (ECM) or
any substrate that they are cultured on, by regulating their
complex signaling pathways (11-16). Cells are naturally lo-
cated in a chemically and topographically complicated en-
vironment in vivo, which is different from what is used
commonly for in vitro culture conditions (17-19). Several
sizes of topographies, from macro to micro, and nano scale
featured cells might be faced (20). In response to topo-
graphical cues tested by nano scale patterns such as dots,
columns, pores, pits, meshwork, gratings, and random sur-
face roughness, cells undergo different reactions in terms
of morphology, adhesion, proliferation, cytoskeletal for-
mation, migration, gene expression, and surface antigen
display. The previously mentioned patterns are created
by a variety of techniques such as nanolithography and
nanofabrication or molding (8, 10, 11, 20-22).

2. Methods

2.1. Human Primary Keratinocyte Isolation and Culture

2.1.1. Sample Preparation

Foreskin tissue was taken from a newborn baby during
circumcision with the informed consent from their par-
ents and kept in cold EpiLife (Gibco) containing 300 U/mL
penicillin and 300µg/mL streptomycin (Gibco) at 4°C until
use. The tissue sample was placed in an uncoated 100-mm
bacterial Petri dish and kept moist with some medium.
Subcutaneous fat and loose connective tissues (hypoder-
mis) were removed using fine tweezers and a scalpel.

2.2. Overnight Digestion

Then, the skin was placed in a Petri dish, while the epi-
dermis side was down. Tissue was scraped away using the
edge of the scalpel until only the thin epidermis and the
dense dermis remained, and cut the piece into ~ 3 - 4-mm
wide strips. Pieces were placed with the dermal side down

in a 60-mm dish containing 5 - 6 mL of EpiLife containing
300 U/mL penicillin and 300 µg/mL streptomycin (Gibco)
and Dispase. Then, covered and kept in a sterile place at 4°C
for 12 - 16 hours (overnight).

2.3. Epidermis Isolation

The overnight digested tissue pieces were taken and
the epidermis was slowly peeled off from dermis using a
tweezer grabbing the edge of the dermal part of the tissue
and the thin epidermal part with another set of thin tweez-
ers. The epidermis (almost transparent) was immediately
transferred into another dish with EpiLife medium and cut
into small pieces of 1 - 2-mm width using scalpel and trans-
ferred to a falcon tube containing 5 mL of TrypLETM Select
(Gibco). Samples were incubated at 37°C for 20 - 25 min-
utes and mixed gently every 5 minutes until the solution
became turbid. About 5 mL of the medium (e g, DMEM)
containing a minimum of 10% FBS was added to the solu-
tion and pipetted vigorously up and down for about 10 - 15
times. Undigested pieces of tissue were eliminated by pass-
ing the solution through a 70-µm mesh filter into a new Fal-
con tube. The solution was centrifuged at 200 g for 5 min-
utes and the supernatant was discarded and the cell pellet
was resuspended in 5 mL EpiLife medium. Number of cells
was counted (e g, with a hemocytometer).

2.4. Keratinocyte Culture

For a better result, culture plates were coated with
Coating Matrix (type I collagen) by adding ~ 2 mL coating
solution to each well of 6-well tissue culture plates and in-
cubated for at least 30 minutes at 37°C. The coated dishes
were stored at 4°C for several days. Coating Matrix was re-
moved and seeded out about 4 × 104 cells per cm2 in an
appropriate EpiLife medium containing 5% HKGS (human
keratinocyte growth supplement) and incubated at 37°C,
5% CO2 and 95% humidity. Medium was changed the next
day and subsequently every 3 days. When cells reached
70% - 75% confluency, they were rinsed with phosphate-
buffered saline (PBS) (without calcium), trypsinized using
TrypLE Select, and incubated at 37°C. Cells were rounded up
and came off the plate within 4 - 5 minutes.

2.5. Keratinocyte Fixation and Substrate Development

The cell medium was completely removed from the
plates before the next step. Cells were fixed with 4%
paraformaldehyde to maintain their shape before mold-
ing process. Polydimethylsiloxane (PDMS, SYLGARD® 184,
RTV, Dow Corning, USA) was used to mold and fabricate the
desired substrates. For this purpose, the silicone resin and
curing agent were mixed in 10:1 ratio, and then, heated for
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30 - 35 minutes at 45°C by microplate heater. After cool-
ing down the preheated solution to 37°C, the cured silicone
was poured onto each of the fixed samples and incubated
at room temperature (RT) for at least 24 - 48 hours to ob-
tain the imprinted substrates. Then, the cured silicone was
peeled off from cell culture plates. In order to remove cell
debris, the substrates were washed with boiled water and
1 M NaOH solution. Another substrate was developed with
an empty plate without any fixed cells as a negative control.

2.6. SEM Analysis of the Developed Substrate

Morphology of the developed PDMS substrate contain-
ing keratinocyte shape and the negative control substrate
without any cell shape was observed by scanning electron
microscope (SEM).

3. Results

3.1. Primary Human Keratinocyte Isolation

Human primary keratinocytes were successfully iso-
lated from foreskin samples of newborn babies using
the previously mentioned method after taking an in-
formed consent from their parents (Figure 1). Isolated ker-
atinocytes showed a successful culture in EpiLife medium
containing 5% HKGS plus 300 U/mL penicillin and 300
µg/mL streptomycin. Collagen type I also helped better at-
tachment of the isolated cells. As shown in Figure 1, cells
were observed using an invert microscope (Figure 2).

Figure 1. Foreskin Samples from Newborn Babies in DMEM Medium Containing 1%
Penicillin/Streptomycin

Figure 2. Early Culture of Human Primary Keratinocytes Showed a Well Attachment
Due to the Collagen Type I Coated Plate.

3.2. PDMS Substrate Development and Analysis

Keratinocytes were fixed by paraformaldehyde solu-
tion and used for PDMS substrate development for cell
shape molding. As previously mentioned, the silicone was
cured and poured on the fixed cells and the desired sub-
strate was successfully developed. SEM imaging analy-
sis confirmed the formation of the cell shape grooves on
PDMS silicon as shown in Figure 3.

4. Discussion and Conclusion

Skin regeneration is one of the most important fields
in the regenerative medicine. There are different types of
stem cells, which are essential in regenerative medicine
and tissue repair. Each one has its own advantages and dis-
advantages by which they can be selected for various med-
ical and research applications. They play a crucial role in
all fields of regenerative medicine due to their huge ca-
pacity to differentiate and produce different kinds of spe-
cialized cells related to the repair of the damaged tissue
(3, 5-7). When culturing stem cells in vitro, it is important
to provide normal conditions for cells, which is essential
for their optimum propagation and differentiation. One
of the essential conditions is the need for a well-developed
environment, which resembles their natural ECM (2, 8, 11).
For this purpose, researchers used different topography
shapes, which can affect the stem cell differentiation. Pre-
vious researches showed that different topographies with
various shapes (i e, triangle, round, multigonal, etc.) or
sizes (from micro to nano) can affect and lead stem cells
differentiate into the desired specialized cells (8, 11, 20-22).
Based on this idea, the current study developed a substrate
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Figure 3. SEM Image of the Developed Substrate

A shows the successful formation of the groove mimicking the cell shape with about 17.05 µm diameter; B is the representative for the control substrate without cell shape.

containing the keratinocyte shape printed as topography
on the PDMS silicone and aimed using it as a culture sub-
strate for further stem cell culture and stem cell differ-
entiation studies. Therefore, in addition to keratinocytes,
other types of cells can be utilized to develop such topogra-
phies and different stem cells can be cultured on the devel-
oped substrates.
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