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Abstract

Context: The current study aimed at evaluating the role of apoptosis in hair and skin conditions.
Evidence Acquisition: In the current study, the role of apoptosis in the occurrence or treatment of the apoptosis-associated disease
was investigated. Likewise, the mechanism of apoptosis pathways occurring in the skin and hair cells was also reviewed.
Conclusions: Melanocyte and follicular epithelial cells are the most sensitive cells to apoptosis, whereas dermal papilla cells, fi-
broblasts, and some of keratinocytes are the most resistance cells to apoptosis. According to the current review study, novel drugs
can be designed based on stimulation or inhibition of the apoptosis such as BCL2, p53 and caspase inhibitors.
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1. Context

The term apoptosis is the death of cells via self-
immolation. An alternative definition of apoptosis is the
programmed cell death (PCD) or cell immolation. Apop-
tosis process is energy dependent and self-controlled and
can occur either in a single cell or a group of cells.

All along the initial stages of apoptosis, pyknosis, and
cell shrinkage are detectable via light microscopy. The
mass of cells is teeny by cell shrinkage; the cytoplasm
is condensing (the most diagnostic aspect of apoptosis).
Apoptotic bodies called budding are formed via karyor-
rhexis and division of cell fragments. Finally, phagocytic
action is performed by macrophages, parenchymal cells,
or neoplastic cells on these bodies (1).

Reduction of connection between caspases and intra-
cellular ATP changes a continuous apoptotic procedure to
a necrotic procedure (2). Inflammatory reaction is the
most significant difference between apoptosis and necro-
sis; no inflammatory reaction occurs during the process of
apoptosis since:

1- Cellular components are not released by apoptotic
cells into the environment.

2- Encircling cells quickly phagocytize the apoptotic
buddies.

3- Anti-inflammatory cytokines are not produced by en-
gulfing cells (1).

The two vital apoptotic pathways are the intrinsic or
mitochondrial pathway and the extrinsic or death receptor
pathway. Moreover, an alternative pathway requires T-cell-
mediated cytotoxicity and perforin-granzyme-dependent
cell-immolation. Apoptosis occurs via either granzyme A
or B in the perforin-granzyme pathway. All these pathways
except granzyme A are lead to activation of caspase 3 and
result in DNA fragmentation, degradation of nuclear pro-
tein and cytoskeletal, crosslinking of protein, formation of
apoptotic bodies, expression of ligands for phagocytic cell
receptors, and in the end, are phagocytized by phagocytic
cells (3).

2. Importance of Apoptosis in Hair and Skin

2.1. Role of Apoptosis in Disease Treatment

2.1.1. Acne Vulgaris

One of the most prevalent inflammatory skin dis-
eases is acne vulgaris that involves more than 80% of pre-
adulthood population of the developed countries. Four
vital factors in the pathogenesis of acne are: the increase
of sebum production, hypercolonization and formation of
biofilm by Propionibacterium acnes (P. acnes), the increase
of acro-infundibular keratinocyte (KC) proliferation with
comedo formation, and follicular and perifollicular in-
flammation (4).
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The p53 controls a series of pivotal genes associated
with acne pathogenesis such as AR, FoxO transcription fac-
tors, BLIMP1, and mTORC1, which all play an important role
in acne pathogenesis as well as pharmacological responses
of anti-acne agents (5). The p53, a genome protector, is a
particular regulator for cell homeostasis. It regulates the
most crucial cellular reactions such as AR signaling and
IGF-1, and via induction of MDM2 discharges p53-induced
cellular reactions by means of ubiquitination and protea-
somal degradation of p53, FoxO1, and FoxO3a, accordingly
(6).

2.1.2. Wound Healing

Wound healing is an elaborated procedure that re-
quires soluble mediators, extracellular matrix, blood cells,
and parenchymal cells. Wound healing consists of three
stages: (1) inflammatory reactions, (2) new tissue forma-
tion, and (3) tissue restoration (7). In the initial stages of
tissue restoration, after 12 hours wound injured inflam-
matory cells undergo apoptosis initiation process (8). A
well-marked feature of initiating the event of the corneal
wound healing reaction is stromal keratocyte apoptosis
(9).

Releasing growth signals via apoptotic cells trigger
stem cell proliferation via caspases 3 and 7 proteases re-
quiring the caspase-mediated activation of phospholipase
A2 and the posterior production and release of the lipid sig-
nal prostaglandin E2, a cell proliferation stimulant (10).

The apoptosis of immune cells can end the inflam-
mation and start the healing, and phagocytosing the
apoptotic cells by macrophages is a major key of the
phenomenon related to actively tissue restoration from
wound inflammation (11).

2.1.3. Psoriasis

Psoriasis is a prevalent skin condition distinguished by
a hyperplasia and the imperfect differentiation of epider-
mal KCs. Overexpression of Bcl-XL occurs in all layers of epi-
dermis in psoriatic condition (12).

Complex interactions among the innate immune sys-
tem, dendritic cells, and genetically activated T-cells pre-
dispose abnormal KCs spread psoriasis. Psoriasis also oc-
curs due to the infiltration of activated T-lymphocytes in
the epidermis and dermis resulting in the production of
several inflammatory cytokines such as interferon (IFN)-
α, interleukin (IL)-2, and tumor necrosis factor (TNF)-α (13)
moreover, in vitro studies indicate that resistance of psori-
atic KCs to apoptosis is more than that of normal skin KCs
(14).

Ultraviolet (UV) radiation (311 nm) can be used to in-
duce apoptosis in psoriatic KC for treatment procedure.
Apoptosis can be directly induced by UVB in T-cells, and it

can be also indirectly induced by upregulation of FasL in
KC (15).

UVB phototherapy can treat the disease by eliminating
T-cells or KCs via apoptosis, or immune modulation by IL-10
(released from KC) (16).

2.1.4. Vitiligo

Selective destruction of melanocytes responsible for
skin pigmentation causes a skin disorder called vitiligo.
Clinical signs of vitiligo are the localized or generalized
white macules on the skin and progression of the dis-
ease is commonly unpredictable. Selective destruction of
melanocytes can occur by necrosis or apoptosis (17). Some
investigations show that apoptosis is a more probable pro-
cess (18).

Induction of apoptosis is caused by certain factors such
as suppressing the expression of BCL2 or increasing the ex-
pression of p53 such as the UVB. Some studies indicate that
T-cells and macrophages are located nearby the residual
perilesional melanocytes in generalized vitiligo. Accord-
ingly, it is likely that apoptosis of melanocytes in vivo oc-
curs in vitiligo by auto-reactive T-cell and/or macrophages
(19).

2.1.5. Skin Tumor

Skin tumors cover malignant melanoma and non-
melanom cancers (NMSCs) including epithelial source
neoplasms such as keratoacanthoma (KA), squamous cell
carcinoma (SCC), and basal cell carcinoma (BCC) (20).

The mutation of the p53 gene results in the loss of the
defensive role and occurrence of pro-oncogenic actions
leading to uncontrolled cell proliferation and cell resis-
tance to apoptosis. Consequently, resistance to apoptosis
is a crucial fact in photocarcinogenesis, and the removal
of cells that contain extra UV-induced DNA damage is a
pivotal means to defend against skin cancer development.
The tumor suppressor protein, P53, can affect both main
pathways of apoptosis, intrinsic and extrinsic (21).

Failure of lymphocytes infiltrated to the tumor to
mediate and regulate tumor growth is related to signal-
ing malfunction, impulsive apoptosis of circulating and
tumor-infiltrating T-lymphocytes (22).

Tumor signals can resist against different apoptotic
signals (23). CTLs (CD8+ T-lymphocytes) might bypass tu-
mor resistance to Fas/FasL-induced death via granzyme-
mediated apoptosis (24).

Capability of granzyme B to skip caspase cascade and to
stimulate the apoptotic pathways at different access points
is remarkable; ability of tumors to evolve various defenses
in the caspase cascade and intracellular signaling lead to
their resistance to apoptotic stimulators (25). In vitro stud-
ies investigated that granzyme B/perforin pathway can
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induce apoptosis in multiple-drug-resistant (MDR) and
death-receptor resistant cell lines (24), although another
study indicates that overexpression of the protease in-
hibitor PI-9/SPI-6 (serpin) can lead to the resistance of tu-
mors against granzyme-mediated killing (26). Downregu-
lation of Fas expression on the cell surface can survive SCC
from Fas/FasL-mediated apoptosis (27), and regulate apop-
tosis of infiltrating T-lymphocytes by expressing FasL on
their surfaces (22, 23). Anyway, KAs constantly express high
levels of Fas in association with inflammatory cells sensi-
tive to T-cell mediated apoptosis leading to tumor suppres-
sion (27).

2.1.6. Skin Pigmentation

The skin color of humans varies from extremely
fair/light to extremely dark depending on a racial/ethnic
background, but the density of melanocytes in a given area
(e g the back or arms) is almost the same on any skin type.
KCs in fair skin lead to the accumulation of poorly pig-
mented melanosomes above the nuclei, though in dark
skin the considerably pigmented melanosomes develop
separately in KCs, therefore, maximizing their absorption
of light. The melanocytes of epidermis proliferate slowly,
if at all, under normal condition, and are actually resis-
tant to apoptosis for their high expression of Bcl2 (28). The
density and differentiation of melanocyte are influenced
by the surrounding, including UV and factors exuded by
adjacent fibroblasts and KCs (29). There are some recog-
nizable differences including reposition of melanin, pro-
tection against DNA damage, and induction of apoptosis
in melanin-containing KCs. Translocation of melanin from
the lower epidermis upward is stimulated by UV radiation
more often in dark skin (30). Also, UV-induced apoptosis
apparently occurs in dark skin rather than fair skin that in-
dicates a more effective elimination of UV-damaged cells;
this may cause reduction in photocarcinogenesis of darker
skin (31).

Under normal condition, p53 in the KC is a skin tan-
ning signal transducer and a vital factor in regulation
of KC-melanocyte signaling cycle and skin pigmentation.
Under normal conditions, p53 is the transducer of the
skin tanning signal and a vital factor in regulation of KC-
melanocyte signaling cycle and skin pigmentation in the
KC. When genetic disruption of melanin biosynthesis oc-
curs in white colored skin, this cycle acts as a stimulator of
melanocyte proliferation. The p53 was intended in the cur-
rent study as a pivotal tumor suppressor and a lot of mech-
anisms by which the p53 pathway may be dysregulated in
tumors define its significance as a tumor suppressor (32).

2.1.7. Unwanted Hair Removal

Physical methods to remove unwanted hair growth
(light-induced hair removal and laser) are based on in-
ducing catagen and apoptosis in the hair follicle (HF) (33).
These methods provide the selective absorption of light by
the HF chromophores such as melanin.

2.2. Role of Apoptosis In Disease Induction

2.2.1. Sun Burn

UVR is an active apoptosis inducer in the skin. Apop-
totic epidermal KCs, known as sunburn cells (SBCs), have
some pyknotic nuclei and a shrunken, eosinophilic cyto-
plasm in their look. SBCs can be detected within eight
hours after exposure to UVR at maximum dosage for 24 -
48 hours and fade away by 60 - 72 hours (34).

Pyrimidine (6 - 4) pyrimidine photoproducts (64PP)
and cyclobutene pyrimidine dimers (CPD), which occur at
a ratio that is different from 4:1 to 10:1, are the most notice-
able photo- lesions induced by UVB that exert potent muta-
genic effect (35).

UVB-induced apoptosis involves some different signal-
ing pathways such as: (1) direct DNA-damage that causes
apoptosis; (2) death receptor-mediated apoptosis; and (3)
apoptosis induced by the formation of reactive oxygen
species (ROS) (36).

Nucleotide excision repair (NER) eliminates a large
number of DNA lesions removing short single-strand DNA
nucleotide stretches (24 - 32 bases) surrounding the dis-
rupted site, and then altering the removed DNA lesion (37).
SBC numbers are increased in patients with xeroderma
pigmentosum; a condition in which genetic defects debil-
itate the NER process (38). The pivotal role of DNA damage
in apoptosis induced by UVB- confirmed by in vivo inves-
tigations in humans-indicates that the increase of DNA re-
pair by the topical use of repair enzymes reduces the SBCs
formation (39).

Genes that regulate the apoptotic pathway and the
ones associated with age-related dysfunction are respon-
sible for forming SBCs. UV activates the p53 and p21, in-
duces p53-independent KC apoptosis, apparently by the
membrane activated signal transduction pathways (40).
UV-induced KC apoptosis is blocked when BCL2 is over ex-
pressed or pretreated with tumor-promoting phorbol es-
ter (41). UV-induced JunB expression, loss of c-Jun expres-
sion, and accelerated UV-induced KC apoptosis increase
in AP-1 immune reactivity over all the epidermal cell lay-
ers that result in increasing the number of apoptotic KCs
suggest the role of these proteins in UV-induced apoptosis
(40).
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2.2.2. Leishmaniasis

Leishmania major, L. tropica, and L. aethiopica cause cu-
taneous leishmaniasis (CL) in the old-world and close his-
tological studies can clarify the inflammation patterns in
these lesions (42).

In the dermis, which comprises ulcers caused by L. ma-
jor, macrophages are infected by L. major and infiltrate neu-
trophils, monocytes, plasma cells, and activate T-cells. Pro-
liferation and activation of KC with upregulation of acti-
vation markers such as HLA-DR are mentioned together
with signed epidermal hyperplasia, necrosis, and apopto-
sis (43). Also, upregulation of Fas and FasL can be observed
in the skin in L. aethiopica- and L. major-induced CL and ul-
cers containing blocked apoptotic KCs.

In CL caused by L. major, TRAIL as well as the pro-
apoptotic receptor TRAIL-R2 and the pro-inflammatory re-
ceptor TRAIL-4 were upregulated in infected cases com-
pared to healthy controls (44).

2.2.3. Graft-Versus-Host Disease

Graft-versus-host disease (GVHD) can be caused by allo-
geneic bone-marrow transplantation and it is the result of
tissue damage caused by cytotoxic T-cell. KCs in cutaneous
GVHD die in apoptotic process (45) mediated by secreted
TNF-α and FasL presented by lymphocytes. FasL inhibition
or lack of perforin reduces mortality and cutaneous GVHD
manifestation (46). It is important to neutralize both FasL
and TNF-α with antagonizing antibodies to completely re-
peal this disorder (47).

2.2.4. Toxic Epidermal Necrolysis (TEN, the Lyell Syndrome)

Toxic epidermal necrolysis (TEN, the Lyell syndrome)
and the Stevens-Johnson syndrome (SJS) are infrequent
acute dermatological diseases described by mucosal ero-
sions and epidermal necrosis (48) with the severity of con-
tact reduction between dermis and epidermis and enor-
mous apoptosis of KCs (49), and FasL expression is in-
creased KCs of lesioned skin in patients with TEN (50).

By incubating the skin cryosections of patients with
TEN, Fas-sensitive Jurkat cells undergo Fas-dependent
apoptosis (51). In addition, intravenous administration
of human immunoglobulin taken from healthy blood
donors that contains anti-Fas antibodies is a promising
therapy to treat the patients with TEN (52). These results
imply the significant role of the Fas signaling pathway in
TEN development.

2.2.5. Erythema Multiforme Major

EM, both major and minor variants, is dominant due
to previous infections, especially with herpes simplex virus
(HSV), and only rarely with medications.

EM major differs from TEN and SJS in terms of severity;
regarding the distribution and pattern of the skin lesions
in both major and minor EM, Fas-mediated apoptosis may
play a role in EM pathogenesis as the pathogenesis of TEN
and SJS (50, 53). The simultaneous overexpression of epi-
dermal Fas antigen indicates that apoptosis of KCs may be
a part of the pathophysiology of all these conditions.

The intense expression of Bcl-2 along the epidermal
basal layer and in the mononuclear cells of the dermis in-
filtrates both EM and SJS/TEN. The product of the proto-
oncogene BCL-2, i e, Bcl-2 protein, blocks apoptosis in var-
ious conditions and is supposed to inhibit a fundamental
step in the pathway of apoptotic cell death (54).

2.2.6. Pemiphagus

Pemphigus is an autoimmune cutaneous blistering
disease defined by the autoantibodies presence against
structural proteins of the intracellular junctions. Pemphi-
gus foliaceus (PF) and pemphigus vulgaris (PV) are the two
leading types. In PF, the target for exposure to IgG is desmo-
some cadherin desmoglein-1 (dsg-1), while in PV, antibod-
ies to desmoglein-3 (dsg-3) in mucosal PV and to dsg-1 and
dsg-3 in mucocutaneous PV lead to loss of adhesion in the
suprabasal layer (55, 56).

Apoptotic KCs exist in PV lesioned tissue. When PV-
IgG presents in KCs, Bcl-2 expression is reduced, FasL is
secreted, and various apoptotic proteins are upregulated.
There is a possibility of participation of the extrinsic apop-
totic pathway in PV. Activation of p38 mitogen-activated
protein kinase (MAPK) as a required event for PV IgG in-
duced acantholysis (57).

2.2.7. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is one of the sys-
temic autoimmune diseases characterized by the autoan-
tibodies presence to nuclear and cytoplasmic antigens in
conjunction with a broad range of clinical signs. Photo-
sensitivity is one of the SLE properties. The aggregation of
apoptotic cells due to decreased removal of apoptotic cells,
an increased rate of apoptosis, or a combination of both is
considered a significant factor in the extension of inflam-
matory lesions, as observed in the skin (58, 59).

There was an increase in the expression of Fas in KCs
in LE lesions, while the expression of Bcl-2 decreased after
UVB irradiation, and an apoptosis induction was observed
in the skin of patients with SLE (60).

More pro-inflammatory reaction occurs after UVB irra-
diation related to apoptotic cells. It is assumed that this
might be induced by the opsonization of apoptotic KCs by
autoantibodies and afterwards clearance by macrophages
and/or other phagocytes.
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2.2.8. Dermatitis Herpetiformis

Dermatitis herpetiformis (DH) is an autoimmune sub-
epidermal blistering disease defined by chronic and recur-
rent eruptions of erythematous, popular, urticarial, vesic-
ular, and bullous lesions. Granular IgA deposits at the der-
mal papillae express the immunological marker of the dis-
ease precisely correlated with a gluten-sensitive enteropa-
thy (GSE), indistinguishable from coeliac disease (CD) (61).
A genetic background (HLA-DQ2, -DQ8) appears to allow an
immune hyperactivity, which causes specific reactions to
humoral and cellular immunity (62). Also, some investiga-
tions show that Th2-lymphocytes play a significant role in
the DH immune inflammation (63).

There were considerable apoptotic cells in the basal
layer of epidermis in DH lesions; in addition. hyperacti-
vation of the two main pathways of apoptosis, i e, mito-
chondrial (by intracellular expression of Bax and Bcl-2) and
death receptor (by expression of Fas and FasL on cell sur-
face) pathways were observed in DH. FasL binding to Fas in-
duces intracellular signals that finally lead to caspases acti-
vation and result in nuclear fragmentation and beginning
the apoptotic cell death (64). Epidermal Fas expression can
be significantly unregulated by various stimuli such as cy-
tokines (Il-1, TNF-a, IL-15 and IFN-y), UV radiation, and viral
infection (65).

2.2.9. Eczematous

The term eczematous dermatitis (eczema) includes
several inflammatory skin diseases including atopic der-
matitis that are often defined by the vesicles formation
associated with exudation. KC apoptosis is the initiating
event in the development of the epidermal pathology ob-
served in eczematous dermatitis (66).

The clinical symptoms include papules, redness, itch-
ing, vesicles, and scaling. Since T-cells form the majority
of cellular infiltration in the eczematous dermatitis, a dys-
regulated, cytokine mediated response of the immune sys-
tem seems to be a significant pathogenic factor. KCs within
eczematous lesions exhibit abnormal expression of MHC
class II antigens (HLA-DR), ICAM-1 (CD54), and IFN-g per-
suadable protein-10, all of which are intensely induced by
IFN-g (67). Type 2 cytokines (IL-5, IL-4) and type 1 cytokine
(IFN-g) play important roles in the inflammation of skin
(68). Skin-infiltrating T-cells cause Fas-induced KC apop-
tosis, which is an important mechanism in the eczema-
tous dermatitis pathogenesis. In addition to the interac-
tion of FasL-FasR in eczematous dermatitis, it may be pos-
sible that activated T-cells use granule-mediated killing by
granzymes and perforin (69).

2.2.10. Lichen Planus

Apoptosis is also involved in lichenoid tissue. Reac-
tions are histologically characterized by basal KC damage
and mononuclear cell infiltrate at the derma epidermal
junction. The individual KCs damaged, termed as colloid
(civatte or cytoid) bodies, on histopathological examina-
tion of the lesions. These colloid bodies are apoptotic cells.
Cytotoxic T-cells and natural killer cells mediate the mode
of cell death in lichenoid tissue reaction. Cytotoxic T-cells
release granzyme A and B (70).

2.2.11. Diabetic Wound

The transcription factor, nuclear factor-erythroid 2–
related factor 2 (NRF2), regulates the adaptive response to
exogenous and endogenous oxidative stress (71), as well
as cell migration, apoptosis, proliferation, and differenti-
ation (72).

The protective role of NRF2 and the potential therapeu-
tic effect of NRF2 activators are demonstrated in a diabetic
nephropathy animal model. Skin tissue is demonstrated
by greater oxidative DNA damage, apoptosis, and com-
pensatory NRF2 pathway activation. Studies further con-
firmed that pharmacological NRF2 activation contributes
to important events of wound healing, including oxida-
tive stress attenuation, promotion of proliferation and mi-
gration, and decreased apoptosis under high glucose. Ox-
idative stress is prevalent in diabetes. Excessive oxidative
stress damages proteins, lipids, and DNA in the cells, which
may ultimately lead to cell death and subsequent tissue
dysfunction. In response to oxidative stress, cells activate
NRF2 to repair the damage. Therefore, pharmacological
NRF2 activation ensures that the cells are protected (less
damage, less apoptosis) and it also regulates the expres-
sion of other proteins that play significant roles in wound
healing (MMP9, TGF-b, and migration- and proliferation-
related genes) through direct or indirect mechanisms;
some of which, as well as the effects of different oxidative
stress levels on NRF2 signaling/wound healing, remain to
be clarified in future studies (73).

2.2.12. Androgenic Alopecia

Anagen phase of the follicular cycle results in andro-
genic alopecia (AGA). Progressive anagen truncation leads
to miniaturized follicles, and eventually, follicular loss is
associated with gentle inflammation, but not scarring.

Androgens such as dihydrotestosterone (DHT) plays
pivotal role in the development of androgenetic alopecia
(AGA), but the mechanism of this effect is not understood
yet. Therefore, due to the important role of apoptosis in
normal hair cycle, it can be concluded that the expression
of apoptosis is related to immune histochemical markers
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in scalp biopsies and is different in the individuals clini-
cally affected by AGA (74).

Bcl-2 and PCNA (proliferating cell nuclear antigen) are
considerably expressed in epidermal basal layer and follic-
ular dermal papilla (P < 0.001). Elevated expression of Bcl-
2 is observed in perifollicular lymphocytic penetration of
the bald area. TUNEL staining shows no apoptotic KCs in
the hair follicles indicating that proapoptotic Bax and Fas
were not expressed, but in the epidermis. Follicular minia-
turization occurs as a result of constant perifollicular in-
flammatory infiltrate resulting in the expression of anti-
apoptotic Bcl-2 in dermal lymphocytes and reduction of
proliferation rates in the bald area of patients (75).

2.2.13. Skin Aging

Thinning of the dermis and subcutaneous adipose
layer, flattening of the dermal epidermal junction, and de-
creased numbers of melanocytes, KCs, Langerhans cells,
and mast cells are vital aspects of sun-protected aged skin.
The thickness of epidermis varied and the number of
Langerhans cells also decreased, but increased numbers of
melanocytes are indicative of photodamaged skin. Mito-
gens inhibit DNA synthesis that results in irreversibly ar-
rest growth of G1 phase (76). In aged skin, both intrinsic
(chronology) and extrinsic (the photoaging) pathways of
apoptosis play key roles in aging of the skin (77).

Also, some early response genes such as c-myc, c-jun,
and Ha-ras are expressed via aging cells, though cfos or the
Id genes are not expressed. Phosphorylation of retinoblas-
toma protein (Rb) and late G1 gene expression inhibit (76,
78) downregulation of cyclin A and BCL-2 family, glucocor-
ticoid receptor, androgen receptor, epidermal growth fac-
tor receptor, and IL-2 receptor, expression of Rb, p53, and
p21Waf-1/cip; all inhibitors of cell cycle progression pro-
ceed apoptosis in the epidermis. P21 plays the role of p53
in its absence, and senescent and quiescent cells produced
it in significant amounts (79).

AP-1 transcription factor family genes are dysregulated
during aging and play a significance role in terminal dif-
ferentiation and apoptosis. In addition, C-fos is downregu-
lated in senescent cells, whereas continuous expression of
c-fos induces cell death in the epidermis (80).

Therefore, it is understood that senescence of the epi-
dermal KC is a specific mechanism and is not similar to ei-
ther differentiation or apoptosis.

2.3. Role of Apoptosis in Skin and Hair Cells

2.3.1. UVB and Fibroblast Apoptosis

Transcription-coupled repair (TCR)-deficient human fi-
broblasts induce apoptosis by p53 accumulation at more
reduced UV doses than cells capable in NER sub-pathway;

thus, indicating that lesions present in the transcribed re-
gions of the genome act as signals for the stabilization of
p53 and apoptosis (81, 82). In comparison to normal fi-
broblasts, global genome repair (GGR)-deficient (XP-C) fi-
broblasts present a similar dose-response in relation to
the accumulation of p53 and RNA synthesis (81). How-
ever, according the studies with primary human fibrob-
lasts and CHO (Chinese hamster ovary) cells, there is a cor-
relation between UV-induced apoptosis and cell progres-
sion through the S (synthesis) phase of cell cycle (83).

Mdm2 is a transcriptional target of p53. The absence of
induction, in human fibroblasts deficient for TCR was asso-
ciated with apoptosis after UV (84); thus compatible with
the negative role of Mdm2 in the p53 function. It can be re-
alized that Mdm2 induction would be dependent on the UV
dose; in fact, regulation and interaction of p53 and Mdm2
are dose-dependent in human fibroblasts (85).

The apoptosis rates for normal (FHN), TCR-deficient
(CS-B) primary human fibroblasts, and GGR-deficient (XP-
C) were determined after cell radiation (majority in G1
phase) with increasing doses of UVB, by flow cytometry
quantification: According to Figure 1, for the three cell
lines, the apoptosis levels reached a plateau; increasing
doses of UVB cause apoptosis at saturated level (86).
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Figure 1. UVB caused apoptosis in FHN, XP-C, and CS-B fibroblasts: Cells were syn-
chronized in G1, irradiated with fixed increasing UVB doses, and collected 72 hours
after radiation. Apoptosis rates were determined by sub-G1 quantification through
cytometric flow.

Two doses with equal toxicity were defined for each cell
line, one considered as low dose, with at least 5% increased
apoptosis in comparison with the non-irradiated controls,
and the other as high dose’ chosen within the early plateau
regions of the curves for each cell line (Table 1). The defined
doses led to apoptosis rates within the range 10% - 20% for
low doses and 40% - 60% for high ones (86).
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Table 1. UVB Doses Defined as Low or High Based on the Apoptosis Levels (Sub-G1)
Induce in Each Cell Line

Fibroblast Low DoseM J/m2 High Dose, J/m2

CS-B 125 - 250 500

XP-C 375 - 500 750 - 1000

FHN 750 - 1000 2000

2.3.2. Melanocyte

Melanocytes are specialized to produce melanin that
is necessary for the pigmentation of some tissue such as
skin, hair, eye, etc. A special organelle named melanosome
is responsible to produce melanin from tyrosine or pheny-
lalanine with the cooperation of some enzymes and pro-
teins, and then the melanin is translocated to adjacent KC
via dendrites. The key role of melanocyte is to protect skin
from genotoxic stress of UV radiation via absorption role
of melanin (87, 88).

Some anti-apoptotic factors are detected in
melanocyte to regulate its functions such as those
of Bcl2 family; MCL1, the homolog of Bcl2 is found in
melanocytes; also, both c-IAP1 and c-IAP2 are strongly ex-
pressed in melanocytes. XIAP expression in melanocyte is
low, but sufficient; livin is also expressed in melanocytes;
though survivin- inhibitor protein of apoptosis (IAP) -
FLIP, and caspase-8 inhibitor are not detected in normal
melanocyte cells. On the other hand, there are some pro-
apoptotic factors recognized in melanocyte such as the
tumor suppressor p53 that are expressed weakly. Apaf-1,
p53, dependent caspase-9 cofactor, and Bax (member
of Bcl2 family) are eloquently expressed in cell lines of
melanocytes (89).

2.3.2.1. Role of Melanocyte in UV Protection

UV radiation is a crucial factor that induces some dys-
functions such as loss of cellular integrity, DNA damage,
and apoptosis in many types of skin cells; melanocyte via
production of melanin protects skin against destructive
effects by absorption of UV radiation (90). Responses of
melanocyte to UV exposure is regulated by adjacent cells
such as KC through secretion of paracrine factors such as
α-MSH known as an essential factor with protective role
against DNA damage (89). Nrf2 regulates secretion of α-
MSH, responses of UVR mediated oxidative stress, and in-
flammatory responses of melanocyte to UVR; as well, it
plays a protective role in UVB-induced CPD formation in
melanocyte (91).

Response of melanocytes to UVR is via apoptosis pro-
cess; by this way, expression of some apoptotic factors such
as Mcl-1, XIAP, and livin are reduced. Also, expression of the
tumor suppressor p53 is increased in this condition (89).

In addition, phosphorylation and activation of p53 MAPKs,
ERK, and JNK are the particular regulatory responses of
UVR via apoptosis in melanocyte and KC (91).

2.3.2.2. Hair Melanocyte

Melanocyte stem cells are located in the hair follicle
and play a pivotal role in the sustenance of periodical
cycles of hair pigmentation. Melanocytes appear, prolif-
erate, and differentiate into mature melanocytes in ana-
gen phase of hair cycle. Apoptosis remove melanocytes
from hair follicle in catagen phase and finally they are
completely eliminated from hair cycle in telogen phase.
When anti-apoptotic factors such as BCL2 are absent in hair
follicle, no melanocyte stem cell exists due to apoptosis
stimulation during the primary anagen. Selective loss of
melanocyte stem cells during hair follicle morphogene-
sis is the result of the hair-graying phenotype of Bcl2 de-
ficient. Another study indicates that removal of the stem
cells is approximately related to ectopic differentiation of
melanocytes (92).

2.3.3. Keratinocyte

The most specialized epithelial cells are KCs, which is
the most sufficient cell type in the epidermis that synthe-
sizes primary factors of barrier structure of skin by ar-
ranged differentiation. KC differentiation is enhanced by
calcium, hydrocortisone, and vitamin A depletion and that
differentiation is generally suppressed by retinoid and low
calcium levels (93).

Apoptosis of KC presents a vital pattern in the modula-
tion of proliferation and maintenance of epidermal thick-
ness and removal of premalignant cells. Anti-apoptotic
proteins such as Bcl2 family, its homolog, Mcl-1, and sur-
vivin are not detected in KCs; though Bcl-xl is distin-
guished. Also, both c-IAP1 and c-IAP2, XIAP, and livin are ex-
pressed weakly in KC lines. Moreover, the caspase inhibitor,
FLIP, is highly expressed in KC. Pro-apoptotic factors such
as the tumor suppressor, p53 and p53-dependent caspase-9
cofactor Apaf-1 are expressed weakly in KCs. Also, the Bcl2
family member, Bax, is absent from KC. Therefore, the anti-
apoptotic protein FLIP is the factor expressed in highest
amount in KCs, and Bcl2 family are the lowest expressed
ones in this type of cells (89).

There are two important pathways of KC apoptosis. The
first one is MAPK pathway that is activated via phosphory-
lation of epidermal growth factor receptor (EGFR) (94).

Subsequent phosphorylation and activation of MAPK
kinases (MEKs) and extracellular signal-regulated kinases
(ERKs) cause stimulation of a MAPK cascade via EGFR sig-
naling. The second pathway occurs by involving phos-
phatidylinositol 3-kinase-mediated activation of the ser-
ine/threonine kinase Akt (95). Significant role of caspase-9
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in KC apoptosis proved that Akt is a strong KC survival fac-
tor (96). Modulation of expression of IAPs or TRAF death
receptor adapters activate NF-κB via Akt signaling may pro-
mote KC survival (97).

2.3.3.1. UVB-Induced Apoptosis in Keratinocyte

Apoptosis is the most protective factor against UVB-
induced damage in epidermal KCs that rapidly eliminate
premalignant cells. Activation of caspase-9 induces posi-
tive feedback modulation between caspase-3 and caspase-8
and plays the main role in UV-induced KC apoptosis inde-
pendent of p53 (98).

Overexpression of anti-apoptotic proteins such as the
IAP protein survivin and Bcl-2 can block the apoptotic re-
sponses of KCs (99). As a result, upregulation of anti-
apoptotic factors such as Bcl-2 and IAP families can pro-
mote KC survival. Moreover, nerve growth factor and hepa-
tocyte growth factor enhance levels of Bcl-2 and Bcl-xL and
activate AKT to protect KC against UVB-induced damage
(100).

2.3.4. Stem Cell

Stem cells are able to renew themselves and replace
dead cells in the process of tissue repair. The cells that pro-
posed to death, IAPs, are inactivated via antagonists. One of
the antagonists is ARTS, a splice variant of the mammalian
gene Septin4 (Sept4). ARTS is the only Sept4 isoform de-
tected in HFSCs (hair follicle stem cell) that plays a pivotal
role in wound healing and regeneration of hair follicles.
The outer root sheath cells survive catagen in the absence
of pro-apoptotic protein ARTS. At the end, these findings
suggest that deficient of ARTS protects HFSCs against apop-
tosis. HFSC plays role in normal epidermis hemostasis, but
in response to wound, it can enhance proliferation in epi-
dermis and tissue repair, since Sept4/ARTS-/-HFSC are pro-
tected against apoptosis. In addition, XIAP has a crucial
role in wound healing; therefore, it is a necessary factor for
pro-apoptotic activity of ARTS. Conclusively, it was under-
stood that apoptotic regulatory function of ARTS and XIAP
can just be observed in hair follicle and not in more differ-
entiated skin cells; but they attend the apoptotic pathways
in HFSCs that can display significance therapeutic effects
for wound healing and regeneration of hair follicles (101).

2.3.5. Hair Follicle

The HF is a cutaneous structure and has a specific cell
cycle, which goes through courses of active hair growth
(anagen), apoptosis progression (catagen), hair shedding
(exogen), and relative resting (telogen) (102, 103). The activ-
ity of factors promoting the differentiation, proliferation,
and survival predominates, cause HF growth; whereas, in-
duction of apoptosis in HF occurs by activation of a type of

signaling pathways, which cause HF regression (103, 104).
Although catagen is often thought of as a regressive pro-
cedure, it is a wondrously organized energy-requiring re-
modeling process, whose progression assures restoration
of further generation of HFs (105). Different cells in the
HF show different behavioral patterns of apoptosis. The
main follicular epithelial cells and melanocytes are the
most susceptible cells to apoptosis. Though, fibroblasts,
dermal papilla, and some of the melanocytes and KCs are
resistant to apoptosis and are selected for survival (104);
macrophages phagocyte the apoptotic cells in the HF and
neighboring epithelial cells fill the gap left by apoptotic
cells (103). In the hairless gene mutation, the ability of the
HF to reenter anagen is lost due to the dermal papilla and
the HF epithelium collapse during catagen (106).

Withdrawal of growth factors that help differentiation
and proliferation of the cells in the anagen phase and sig-
naling by death receptors prompt the physiological abil-
ity of the HF. According to evidence, apoptosis regulation
of varied distinct of HF is occurred in different pathways
(107) and faults in the apoptosis regulation can cause many
problems, similar to hair growth disorders (hirsutism and
various hair loss conditions) (102). Also, mutation in apop-
tosis pathways in HFs plays the main role in hair loss dis-
orders such as: chemotherapy-induced hair loss and an-
drogenetic alopecia (108). Based on these findings, novel
drugs for apoptosis regulation (for example, synthetic p53
and caspase inhibitors, TNF-α-inhibiting antibodies, Bcl-
2/BclxL antisense oligonucleotides) are recognized (109).
Besides, decreasing apoptosis activity in the HFs and sup-
pression of TGF-β can be effective in the treatment of alope-
cia disorder (male pattern baldness) (107).

2.3.6. Dermal Papilla Cell

The dermal papilla is a dense association of specialized
dermis-derived stromal cells positioned at the base of the
hair follicle, which lengthens the hair growth phase by sig-
naling the follicular epithelial cells (110).

The aggregated human dermal papilla cells express the
hematopoietic stem/progenitor cells (HSPC016)-related
gene (111).

The biological activities of the dermal papilla cells such
as aggregative behavior and hair cycle regulation might
have contribution with the HSPC016 expression. But the
definite roles of the gene HSPC016 in follicle development
and in hair cycling need to be proved by more studies. It
is interesting to observe that the death of both the dermal
papilla cells and the 3T3 fibroblast result in HSPC016 ex-
pression (110).
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3. Conclusions

The role of apoptosis in treating diseases is through
various factors and pathways; regulation of p53 function
is very important to regulate many actions and cellular re-
sponses. Also, the role of this factor in regulating signals
associated with KC, and melanocyte is quite vital.

UVB causes an increase in the factor p53; therefore, in-
creases the induction of apoptosis in skin cells. Also, p53
and p21 (alternative of p53) play a significant role in signal-
ing of aging.

Regulating the expression of BCL2 and FasL proteins
can play an important role in the induction of apopto-
sis for treatment aspects. For example, expression of FasL
in TEN, EM, SLE, pemiphagus, DH, and eczematous are in-
creased and the expression of BCL2 in SLE, and pemipha-
gus are decreased. Therefore, by regulating the expression
of these proteins, it is possible to achieve therapeutic pur-
poses.

Bcl2 family proteins such as MC1 and c-IAP1, c-IAP2,
XIAP, and livin are expressed sufficiently in melanocyte
in comparison with other apoptotic proteins such as sur-
vivin, FLIP, and caspase 8 inhibitor. Also, NRF2 regulates
melanocyte responses against UV-exposure withα-MSH ex-
pression.

FLIP is the most expressed and BCL2 family the least ex-
pressed factors in KC, though Bax is not expressed in KC at
all. There are two pathways in KC apoptosis, the first one
is MAPK that phosphorylation of EGFR plays a pivotal role
in activation of this pathway. The second pathway is AKT
(independent of p53). Caspase 9 is the most key factor in
this pathway and provides a positive feedback between cas-
pases 8 and 3. Also, some growth factors increase the AKT
activity and protect KC from apoptosis.

ARTS is the antagonist of anti-apoptotic proteins.
Therefore, in the absence of this gene, HFSCs are protected
against apoptosis. Also, XIAP have crucial effect on ARTS
regulation for wound healing process.

The cells with the highest sensitivity to apoptosis are
melanocyte and follicular epithelial cell though dermal
papilla cell, fibroblasts, and some of KCs are the cells with
the highest resistance to apoptosis.

According to the current review study, novel drugs
can be designed based on stimulation or inhibition of the
apoptosis such as BCL2 inhibitors, p53 inhibitors, and cas-
pase inhibitor.
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