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Role of Macrophages in Vascular Regeneration
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Abstract

Angiogenesis is very important for most strategies for regenerative damaged organs. The natural inflammatory response can be
affected by the activity of different types of macrophages and their cytokines. Macrophages exist in a wide variety of phenotypes.
These macrophages can range from classic M1 to M2 macrophages. M2 macrophages themselves can include different types of sub-
groups. These types of macrophages are usually effective in vascular regeneration while M1 or classic macrophages play a role in
chronic wounds. The macrophages move toward the M2 phenotype or inhibit the polarization of the macrophages toward the M1
phenotype. On the other hand, macrophage polarization can be affected by a variety of factors, such as different types of miRNAs. The
process of vascular repair and enhancing the therapeutic potential of drug regulators the treatment of vascular damage through
modification of macrophage polarization. Macrophages do this by various mechanisms, which are described in detail in this study.
Finally, new therapeutic mechanisms aimed at macrophages in vascular disease are discussed.
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1. Context

Inflammation is a complex process in which cells and
various factors in a certain way protect tissues against var-
ious injuries. In fact, inflammation is a controlled out-
come between inflammatory and anti-inflammatory fac-
tors during which the activity, proliferation, and chemo-
taxis of cells are regulated. Proliferation has a large num-
ber of inflammatory cells, blood vessels created by vasodi-
lation, and a number of inflammatory mediators. There is
also an area of damaged tissue that is deficient in relative
oxygen, which is associated with vascular growth. In the
process of inflammation, a set of cells and chemical agents
are involved. In addition to involving endothelial cells,
the angiogenesis process also involves other cells, includ-
ing inflammatory cells. Among the cells, macrophages are
very important. These cells are involved in the process of
angiogenesis due to growth factors. These factors connect
leukocytes to vascular endothelium and initiate the repair
process. During injury, monocytes guide a number of in-
flammatory mediators and chemical agents to migrate to
the affected area to activate macrophages, inflammatory
agents and a number of R Factors. They help to repair the
environment by causing damage to cells such as the en-
dothelium, epithelium, or mesenchymal. They provide the
conditions for tissue repair and angiogenesis. The role of
macrophages in changing the polarization of these cells in

improving angiogenesis has been described (1, 2).

2. Macrophage Phenotypic Diversity

Due to their phenotypic diversity, macrophages also
show different functions in homeostasis. Different types
of macrophages play a key role in guiding the immune re-
sponse at different physiological stages, including growth,
injury, and chronic inflammation. In addition, tissue-
resident macrophages in many organs have unique gene
profiles (3). And it performs the specific tasks necessary for
a healthy body function (4). Significant advances in the de-
sign of specialized cellular diagnostic techniques have led
to the specialized diagnosis of immune cell phenotypes, in-
cluding macrophages. This leads to a deeper understand-
ing of the different phenotypes of macrophages. Their ori-
gin and phenotype should be discussed (4, 5).

Macrophages can form different types of phenotypes
under different factors. M1 phenotypes are usually formed
under the influence of different cytokines such as IFN-γ,
TNF-α and LPS to M1 phenotype, and in contrast to M2
macrophages which are formed under the influence of IL-
4 cytokines and IL-10. These anti-inflammatory cytokines
improve the angiogenesis process. In terms of metabolic
pathways, M1 macrophages obtain energy from glycolysis
and arginine pathways. M2 macrophages obtain their en-
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ergy through oxidative pathways. M2s are classified ac-
cording to their broad classification. For example, M2C
usually represents inflammatory macrophages that sup-
press inflammatory cytokines (6-12).

3. Angiogenesis/Vascularization

Blood vessels deliver oxygen, metabolites, export
wastes, and the formation of new blood vessels that is
essential to improve tissue function after ischemia or
tissue damage (13, 14).vascular function is undeniably
associated with the preservation and repair of the dam-
aged vascular (14). Endothelial precursor cells (EPCs)
are involved in newly formed capillaries and stimulate
ischemic tissue vessels (15). Endothelial precursor cells are
transported from the bone marrow to the site of vascular
injury, playing an important role in postoperative vascular
repair. Biomechanical tracking Research shows that bone
marrow-derived cells with EPC cell markers play an impor-
tant role in vascular healing (16). One of the advantages of
using EPC in vascular healing is the physical formation of
new capillaries, which regulate processes such as angio-
genesis during inflammation and recovery with the effect
of paracrine (17). Like fat-producing hematopoietic cells,
bone marrow, cells of mesenchymal origin, paracrine
VEGF factors such as increase angiogenesis (18).

4. The General Role of Macrophages in Regeneration

There is considerable evidence that macrophages are
key regulators of the angiogenesis process. They play dif-
ferent roles to ensure proper regeneration (19). It is es-
tablished that the macrophage phenotype evolves the an-
giogenesis process (20). In an acute injury, with the on-
set of tissue repair, a large number of macrophage popu-
lations are transmitted to the injured place (21). Endothe-
lial cells restore the vessels. This process eventually results
in angiogenesis repair and scarring (22). Recently, an im-
portant molecular mechanism has been discovered in M2
macrophages that promotes angiogenesis, permeability,
and the absorption of inflammatory cells in various hu-
man diseases. It can initiate angiogenesis from various
mechanisms. This process itself causes HIF1α and VEGF-A
(23, 24).

5. Paracrine Roles of Types of Macrophages in Angio-
genesis

Macrophages secrete a variety of growth factors as-
sociated with angiogenesis (12). The secretion of VEGF-A

by macrophages is important for the stimulation of an-
giogenesis in the repair of damaged tissues. Also, the
polarization of macrophages will cause the secretion of
growth factors that can again affect the angiogenesis pro-
cess (25). By analyzing gene expression and angiocrine se-
cretion profiles from different macrophage phenotypes,
it was shown that M1 macrophages expressed genes in-
volved in the onset of angiogenesis, including VEGF-A and
FGF2 (12, 26) Studies have shown that M2a macrophages
are able to secrete high levels of PDGF factor, while M2c
macrophages secrete high levels of MMP-9, according to
a study that analyzed macrophages within collagen scaf-
folds. It was shown in mice that different phenotypes were
involved in the angiogenesis process (12, 27). Collagen scaf-
folding with macrophages can reduce the strength of an-
giogenesis because collagen scaffolding can act as a scaf-
fold around the M2 macrophage to prevent it from work-
ing (28). In contrast, glutaraldehyde collagen scaffolds im-
prove angiogenesis by using both M1 and M2 macrophages
(29). M1 macrophages play a role in stimulating capillary
germination, while M2 macrophages help stabilize arter-
ies (30). Strategies for controlling macrophage dynamics
may achieve more effective angiogenesis (30). In one study,
concomitant delivery of CSF1 with VEGF-A in hydrogel im-
plants resulted in stronger angiogenesis than VEGF-A alone
(31). Therefore, it is important to consider which type of cell
is in a ruler. Dynamic growth regulation and regeneration
and how different cell types work together are important
for angiogenesis process (32).

6. Macrophage Interactions with Other Cells for En-
hancement of Angiogenesis

Macrophages with a number of other cells including
endothelial cells, pericytes, and vascular smooth muscle
cells are involved with inactive cells in cell-cell interac-
tions (33, 34). These interactions regulate angiogenesis
during embryonic development and in response to injury.
Macrophage depletion in injured tissue leads to impaired
vascular patterns that can be due to insufficient vascular
repair. Phagocyte ability of macrophages has been shown
to orient cell and cell communication with endothelial
cells, which can be a bridge between two or more angio-
genic buds (35, 36). In studies of the brain, brain cells and
mouse development macrophage were connected with en-
dothelial cells fusion (37, 38). Macrophages also influence
the behaviors of vascular smooth muscle cells that are as-
sociated with the growth and remodeling of microcircula-
tion (38). Recent studies have shown Macrophage polariza-
tion can be a good therapeutic goal to enhance repair in
ischemic tissue areas (39).
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7. Macrophage Differentiation Into Vascular Cells

Macrophages may be able to differentiate vascular wall
cells, including vascular smooth muscle cells, peritoni-
tis, and endothelial cells (40). Smooth vascular muscle
cells that inhabit the middle layer of large blood vessels
can respond to damage in macrophages and mesenchy-
mal stem cells (41). Macrophages are able to differenti-
ate macrophages into SMCs (42). In the regulation of tu-
mor angiogenesis, bone marrow-derived cells have been
shown to be differentiated both in the peripheral environ-
ment and in macrophages. Distinguishing macrophages
from peritonitis or macrophages to fibroblasts can have
important implications for regulating angiogenesis fibro-
sis is an important factor (43). The expression of endothe-
lial markers characteristic of CD31, VEGFR2, by a subset of
monocytes, called myeloid vascular cells (MACs), provides
another explanation for the observed phenotypic overlap
(44). While MAC has been shown to play an angiogenic
role and could serve as an alternative to angiogenesis M2
macrophages, their inability to differentiate into endothe-
lial cells is a drawback to their use (45, 46).

8. Exosome-Guided Phenotypic Switch of M1 to M2
Macrophages for Angiogenesis

A method of induction of macrophage polarization is
the use of exosomes. Using exosomes has been proposed
to directly convert M to M2 for effective angiogenesis. Pre-
inflammatory M1 macrophages release a wide range of pre-
inflammatory exosomes after damage (47). M1-Exosome
exerts an anti-vascular effect. They also showed highly in-
flammatory miRNAs such as miR-155. miR-155 can be trans-
ferred to endothelial cells (ECS) and lead to inhibition of
angiogenesis by regulating genes at reducing the angio-
genic ability of ECs (48). Recent studies suggest that exo-
somes secreted by mesenchymal stem cells may be a new
mechanism for the beneficial effect of MSCs transplan-
tation after myocardial infarction. Studies showed that
MSC-Exosome impairs myocardial in mice through miR-
182 shuttles, which reduces the induction of macrophage
polarization. Another study showed a new way to use MSC-
Exosome as a potential treatment tool for angiogenesis
(49, 50).

9. miRNA-Mediated Macrophage Polarization

Non-coding miRNAs are small molecules’ that can reg-
ulate gene expression and network cellular processes (51).
The gene and cellular regulators associated with miRNA in

macrophage polarization were developed using microar-
ray and RT-Qpcr techniques. miRNAs that modulate the po-
larity of macrophages may have the potential to treat in-
flammatory diseases. Recent findings in the expression of
miRNA expression in polar macrophages of mice and hu-
man resources and a summary of how these miRNAs are
regulated polarization of macrophages (Table 1) (52, 53).

Table 1. lists some of these miRNAs

Polarization miRNA

M1 miR-181a, miR-204-5p, miR-451, miR-125a-3p, miR-125a-3p,
miR-155, miR-127, miR-155, miR-125b, miR-9, miR-155-5p

M2 miR-125-5p, miR-125a-5p, miR-223, miR-146a, miR-132, MiR-34a,
miR-146a-3p, miR-125a-5p, miR-124

10. Signaling Pathway in Angiogenesis by
Macrophages

Studies have shown that both macrophages and pro-
teins secreted in the Wnt signaling pathway regulate an-
giogenesis. Therefore, according to observations, some
macrophages mediate the effects of angiogenesis, and in
fact, macrophages represent Wnt ligands (54). Interferon
IFN-γ and lipopolysaccharide (LPS), two potent inflamma-
tory agents known to regulate Wnt5a protein levels in
macrophages. In addition, Wnt5a can automatically con-
trol regenerative signaling (55, 56). Given that Wnt5a in-
hibits the expression of several inflammatory cytokines in
endothelial cells, including IL-6 and IL-8, the Wnt5a factor
has a direct effect on endothelial cell proliferation, migra-
tion, and Tie-2 expression (57). It is therefore assumed that
Wnt5a, derived from macrophages, regulates angiogenesis
through two direct and indirect mechanisms at different
levels. In addition, Wnt5a has also been shown to regener-
ate macrophage chemotherapy protein, CCL2, in endothe-
lial cells. It is possible that macrophage-derived Wnt5a
could be indirectly conductive. Macrophages are involved
in these vessels and the genetic approaches involved re-
duce the risks of macrophages that can destroy the regen-
eration and persistence of these vessels after delivery. Fur-
ther investigation showed that the secretion of conven-
tional Wnt protein macrophages, Wnt7b, is necessary for
this process. In particular, the secretion of Ang-2 from
the peritonitis causes Wnt7b expression in macrophages
(58, 59). Wnt7b can stimulate the entry of vascular EC
into phase S of the cell cycle (58). Angiopoietin-2 secretion
inhibits Angiopoietin-1-mediated survival signaling in the
endothelial cell, as well as β-catenin signaling to induce
cell cycle entry and subsequent apoptosis (60).
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11. Macrophages as a Potential Target for Vascular Dis-
ease

Different therapeutic agent, which has been used in
the generation, is anticipated to help researchers solve
more clinical problems. A number of these therapeu-
tic agents are performed to improve vascular disease and
with the aim of macrophages. A number of these factors
can help polarize macrophages in the position of vascular
damage. The following table examines a number of these
factors and therapeutic mechanisms (Table 2).

Table 2. A number of Vascular Diseases Aimed at Macrophages

Defection Mechanism References

Chronic kidney disease
(CKD)

VEGF therapy was largely
driven by modulation of
renal macrophages toward
VEGF-expressing M2
phenotype

(61)

Intimal hyperplasia Decreasing the miR-150
increases the high ratio of
macrophages to M1 to M2,
which in turn will cause
hyperplasia.

(62)

Atherosclerosis Different macrophage
phenotypes have different
effects on plaque progress.

(63)

Wounds Mesenchymal cells can
stimulate the functional
repair of vascular
endothelial cells by
regenerating macrophage
phenotypes

(64)

Peripheral artery disease Increased expression of
VEGF165b in macrophages
causes a M1-like phenotype
that directly interferes with
angiogenesis.

(65)

Abdominal aortic
aneurysm (AAA)

Montelukast induces M2
macrophage polarization
and prevents AAA formation

(66)

Choroid
neovascularization

Metalloproteinases–3
(TIMP-3) as a pro-angiogenic
microenvironment, playing
a modulating M2
polarization.

(67)

Intracranial aneurysms Prostaglandin E receptor
subtype 2 (EP2)antagonists
in macrophages

(68)

12. Conclusions

In recent years, studies on the role of macrophages in
the process of many injuries have been studied. One of
the most important aspects is to study the polarization
of macrophages in the face of various physiological situa-
tions. The polarization of macrophages can be affected by
internal or external factors. Macrophages themselves can

control repair processes by using their own function or by
secreting extracellular material. Macrophages play a ma-
jor role in the repair of vascular structures. It can occur
during vascular disease by modifying macrophage polar-
ization and factor secretion.
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