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Abstract

The search for disease-related targets and studying drug-protein and protein-protein interactions are central issues that would ac-
celerate the clinical approval of a drug. Also, by developing an accurate method in this regard, time and resource consumption
will significantly decrease. The low efficiency of some drugs in humans is a grave issue leading to a low rate of FDA approval after
spending billions of dollars and decades of research. Several strategies and methods have been expanded to fill this gap, such as
drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay
(CETSA), and finally, thermal proteome profiling (TPP). The TPP is based on the combination of CETSA and quantitative mass spec-
trometry. Among recently introduced proteomics technologies, TPP demonstrates the ability to offer detailed proteomic profiles for
the large-scale analysis of protein-ligand interactions, including endogenous ligands and proteins like cofactors and metabolites.
TPP facilitates the identification of the markers governing drug efficacy and toxicity and provides an unbiased measure for esti-
mating the rate of drug-target engagement. At a glance at TPP steps, after protein extraction, the molecule is exposed to different
temperatures and drug concentrations. After discarding solubilized and stabilized proteins, the protein’s identity is investigated
by mass spectrometry analysis. As a result of the protein’s structural stabilization after binding to its substrate, TTP helps to accu-
rately identify target proteins with high throughput. In this study, we aimed to introduce the basics of this method and review most
recent studies on this technique.
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1. Context

1.1. Introduction to Drug Discovery

Drug discovery is a multidisciplinary process encom-
passing medicine, biotechnology, and pharmacology, dur-
ing which new candidate drugs are identified. While sev-
eral research teams work together and put in many efforts,
most developed drugs do not acquire clinical approval be-
cause of either low efficiency or high toxicity in clinical
studies (1). One of the most significant drug discovery is-
sues is the absence of a way to directly monitor drugs’ tar-
gets and off-targets within cells and tissues. One reason
for the failure of newly discovered drugs in clinical trials
is that the drug’s targets are monitored via indirect meth-
ods such as studying downstream signaling pathways and
cellular responses (2-4).

To acquire the approval of the US Food and Drug Ad-
ministration (FDA), a drug must pass its development pro-

cesses, including scaled-up and chemical analyses, phar-
maceutical quality assessments, and finally, in vivo testing
(5). Candidate drugs are evaluated for absorption, distri-
bution, metabolism, and excretion (ADME), as well as for
toxic properties in animals. Those candidates that pass
these hurdles are formulated and assessed in clinical tri-
als. Success in these trials will determine whether or not
a drug receives FDA approval (5). However, costly proce-
dures and infrastructure limit the testing scope of newly
discovered chemical compounds with therapeutic poten-
tials (6). Each year, a few chemicals are approved by the
FDA, among them, even fewer are fully aware of their mech-
anisms of action (5). Indeed, the failure in acquiring clin-
ical approval of a drug is a failure of decades of research
and billion dollars of investment. In this regard, there is
a crucial need to develop new methods that can increase
drugs’ effectiveness in the human body. Drugs’ therapeu-
tic effects in the body need specific interactions between

Copyright © 2021, Middle East Journal of Rehabilitation and Health Studies. This is an open-access article distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in
noncommercial usages, provided the original work is properly cited.

http://dx.doi.org/10.5812/mejrh.113533
https://crossmark.crossref.org/dialog/?doi=10.5812/mejrh.113533&domain=pdf
https://orcid.org/0000-0003-1767-7475
https://orcid.org/0000-0002-2353-9215
https://orcid.org/0000-0001-8520-6654


Gholizadeh E et al.

the drug and a variety of biological macromolecules, exclu-
sively proteins and nucleic acids. Consequently, recent ad-
vances in molecular biology and functional genomics en-
sued astonishing developments in this field, especially the
emergence of effective and promising drugs.

1.2. Shortcomings of Drug Discovery Methods

Knowing the chemistry of a compound is necessary
but not sufficient for developing an effective drug, and in-
adequate knowledge of the chemical properties of drugs,
especially in biological systems, is a serious limitation in
this area (7). There is no direct way to monitor the physical
binding of a drug to a target in living cells (8-10). However,
some techniques are available to ascertain physical inter-
actions in cell lysates, including the protein oxidation pro-
tection method (11) and drug affinity and target stability as-
sessment (12), which both are based on the protection of
drugs via their interactions. Despite the identification of
the drug targets of orphan ligands in cell suspensions (11),
the application of these methods must be shown in mon-
itoring dynamic intracellular events. In the presence of a
selective and high-affinity ligand, in situ competitive test-
ing can be performed to detect associated proteins or ex-
tracellular receptors and monitor target engagement (13).

2. Evidence Acquisition

2.1. The Importance of Proteomics in Drug Discovery

Considering the development of the genomics proto-
cols containing instructions for making proteins, why is
it necessary to examine proteomics? What is the need to
study proteins directly?

The most significant answers to these questions are:
- DNA sequence information only provides a fixed and

precise image of a variety of biochemical paths, while cel-
lular life is a variable and dynamic process. A genome re-
mains mostly intact while the cell’s proteins alter by turn-
ing genes off and on in response to environmental con-
ditions. Finally, most gene products have unknown func-
tions (14).

- Proteins are modified after transcription, which is
necessary for them to play their roles, and gene sequences
cannot describe these changes. On the other hand, the
abundance of a protein in a cell does not indicate its
level of activity because its amount often depends on post-
translational changes (14).

- Many proteins are not always proportional to a
unique mRNA (e.g., due to post-transcriptional changes,
only parts of a specific mRNA may be translated to pro-
teins, and for some of them, the translation process will
not happen at all (14).

- The sensitivity of available devices only allows the
detection of highly abundant mRNAs. However, in most
cases, low-abundance mRNAs encode critically important
regulatory proteins (14).

- Many crucial biological samples (such as urine, cere-
brospinal fluid, and plasma) do not contain mRNAs. More-
over, in some specimens, mRNAs are decomposed and lost
due to a prolonged interruption between the sampling
time and mRNA testing (14).

Therefore, although the genome has a steady nature
within cells or organisms, the proteome has variable na-
ture according to intracellular and extracellular microen-
vironments. The characterization of all cellular proteomic
states is called the proteotype, which is a channel between
cellular genotype and phenotype. Accordingly, the pro-
totype of a cell or tissue can influence drugs’ therapeu-
tic efficiency (15). More than 10,000 gene products are ex-
pressed in variable degrees in various cells. They occur
in diverse isoforms or various PTMs at different subcel-
lular localizations. Nonetheless, because of the inherent
complexity of the proteome, accurately defining the pro-
totype seems to be difficult (16). In current proteomics
studies, prototypes are described as lists of proteins and
their semi-quantitative expressions (17). Further, a num-
ber of methods are available to assess some but not all
post-translational modifications in cells (18, 19). The stud-
ies analyzing the functional mechanisms of bioactive com-
pounds, like small-molecule drugs or peptides, aim to
identify their possible binding partners in cellular extracts
with a focus on affinity-based enrichment strategies (20-
22). These methods can be mingled to detect various sig-
naling biomarkers and pathways in different cells (23, 24).

The main drug exploratory methods are target-based
drug discovery (TDD) and phenotypic-based drug discov-
ery (PDD) (Figure 1). In TDD, a target-based approach, the
starting point is a defined molecular target hypothesized
to have an essential role in disease pathogenesis, followed
by a biochemical method to detect small molecules. The
mechanism of action must still confirm candidates’ cellu-
lar activities and predict their possible side effects (25). A
disadvantage of this approach is that proving the involve-
ment of a protein in a particular biological pathway or a
disease is time-consuming (25). On the other hand, PDD, a
phenotypic-based approach, begins with examining a sys-
tem’s phenotype. During this process, the small molecules
that can trigger this phenotype are identified (3). How-
ever, the drug’s action mechanism, which is an essential
criterion for drug development, is not determined (26). Al-
though TDD has been a dominant approach in the pharma-
ceutical industry, there has been a revival of interest in PDD
due to “omics” advances in recent years (27).

Phenotypic screens expose candidate compounds
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Figure 1. Drug discovery methods. A, target-based approaches (reverse chemical genetics). This method starts with identifying changes in molecular targets. B, phenotype-
based approaches (forward chemical genetics). In PDD, after identifying the phenotype of a system, the small molecules that can stimulate the phenotype are identified
(28).

to proteins in more biologically relevant contexts than
screens involving purified proteins.

Since these screens measure cellular function without
imposing preconceived notions of the relevant targets and
signaling pathways, they offer the possibility of discov-
ering new therapeutic targets. So, by determining spe-
cific targets and signaling pathways, they can discover new
therapeutic targets (28).

The PDD approach has some challenges, the most im-
portant of which is the deconvolution of drugs’ mecha-
nisms of action. So, several new methods have been exten-
sively studied for identifying the budding target (28, 29).
These strategies are based on mass spectrometry and ex-
pose small changes in the target’s stability following the
binding of the compound (30, 31). The most important pro-
teomic techniques include drug affinity responsive target
stability (DARTS) (11), stability of proteins from rates of oxi-
dation (SPROX) (32, 33), cellular thermal shift assay (CETSA),
and TPP (34-36).

2.2. Drug Affinity Responsive Target Stability (DARTS)

This method is based on limited proteolysis (37); the ba-
sis of which is the use of specific proteases that cleave a par-
ticular peptide bond in a protein (Figure 2). Via DARTS, it
can be proved that the part of a protein exposed to a pro-
tease is protected by binding to a ligand. In general, the
purpose of ligand binding is to stabilize a part or the whole

structure of the target protein. A big drawback; however, is
that changes in downstream proteins cannot be explored
in the protein extract (11).

2.3. Stability of Proteins from Rates of Oxidation (SPROX)

In SPROX, the aliquots of the protein are exposed to in-
creasing concentrations of a chemical denaturing agent
and then to methionines to determine the levels of oxi-
dized and unfolded proteins (12, 32, 33). Following the bind-
ing of a ligand, proteins will be stabilized against chemical
denaturation. This method, similar to DARTS, cannot iden-
tify the downstream proteins recruited by a drug (Figure 3)
(12).

2.4. Cellular Thermal Shift Assay (CETSA)

Researchers have established that monitoring differ-
ences in the thermal stability of proteins can be applica-
ble for studying the ligand-binding process (39, 40). Re-
garding the absence of a method for cell-wide assessments
and taking into account the recent advancements in mea-
suring intracellular temperature changes (i.e., the CETSA
method), researchers can evaluate target-ligand interac-
tions in living cells (41, 42). As stated, CETSA allows study-
ing target engagement in vivo. One of the advantages of us-
ing living cells is the possibility for monitoring pro-drugs’
mechanisms of import and activation (43).
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Figure 2. Drug affinity responsive target stability (DARTS) (11). After binding of a drug to a protein, proteases cannot cleavage the peptide, so the protein remains intact.

Figure 3. Stability of proteins from rates of oxidation (SPROX) (38). The drug-target interaction increases the protein’s stability against chemical oxidation.

The CETSA technique provides the opportunity to eval-
uate drug-protein interactions in the physiological envi-
ronment, which is a breakthrough development and an
essential step in drug discovery. Living cells are initially
treated with the drug-protein complex, and then the tar-

get protein is identified based on changes in thermal sta-
bility (44, 45). The stability of a drug-target interaction is
determined by the thermodynamic stabilization principle
(i.e., excess energy is needed to separate the ligand after its
binding to the protein) (34, 46-48).
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In addition, the CETSA method can help to achieve im-
portant information on the potential targets of a wide
range of different pharmacological agents. This approach
was confirmed via several model systems to address prob-
lems such as drug activation, off-target effects, drug deliv-
ery, drug efficacy, and drug resistance in mammalian cells,
as well as drug kinetics in animals. Also, the preclinical
applications of developed drugs can be monitored in hu-
mans using the CETSA method. For example, CETSA can be
used to determine the appropriate dose of a drug and the
rate of drug resistance in cancer therapy. The adaptability
of CETSA has delivered the method as a beneficial tool for
drug research and development (41).

The CETSA process begins with treating cells with a
drug or placebo, followed by heating the cells to unfold
and precipitate the target protein. Then cell debris and
aggregates are removed by centrifugation. Finally, using
target-specific antibodies, the target protein is detected
based on its thermal stability. The crucial steps of the CETSA
method include heating (which triggers the denaturation
and precipitation of proteins, except the ligand-bound
proteins that are stabilized) and detection (in which sta-
bilized proteins are distinguished from other proteins
that are already denatured and precipitated during the
heating process) (49). The most significant limitation of
CETSA is that at the final step, stable proteins are identi-
fied by an antibody-based method (i.e. western blotting).
Although western blotting facilitates the verification of
predetermined proteins, it cannot detect non-specifically
bound proteins (34). Therefore, since the CETSA is a lim-
ited antibody-based method, only a small number of spe-
cific proteins can simultaneously be studied, which is a
significant disadvantage. A new approach has been devel-
oped by combining the CETSA method and mass spectrom-
etry (MS). This new mass spectrometry-based technique is
called TPP and could overcome this limitation.

2.5. Thermal Proteome Profiling (TPP)

In the TPP technique, the CETSA technique is com-
bined with mass spectrometry to more comprehensively
study drug-protein interactions and to explore proteins’
intracellular thermal stability and proteolytic susceptibil-
ity. The TPP technique evaluates protein-ligand interac-
tions directly in living tissues or cells and can detect post-
translational changes. It should be noted that the ligand-
protein complex becomes more stable against heat and
chemical denaturation (Figure 4) (34-36, 50). Exposing pro-
teins to thermal stress generally triggers the irreversible
unfolding of proteins. As a result, proteins reveal their hy-
drophobic cores and subsequently aggregate (51-53). The
temperature at which aggregations are formed (i.e., the
melting temperature, Tm) increases in the presence of a

ligand. So, a part of the energy supplied to the protein-
ligand complex is used to separate the ligand from the pro-
tein (39, 54, 55). The evaluation of changes in the melt-
ing temperature (Tm) has been a valuable parameter in
the pharmaceutical industry, allowing for creating com-
pound libraries to find stabilizing ligands for proteins us-
ing fluorescence- or light-scattering–based techniques (56-
59). In recent studies, the combination of Tm shift assays
and the detection of stabilizing ligands for isolated targets
via mass spectrometry have provided a broader detection
power. Also, TPP can be used in living cells without a need
for the labeling process, enabling researchers to conduct
an unbiased investigation on drug targets. Only the TPP ap-
proach has combined all of these advantages (43).

Figure 4. The basics of the thermal shift assay (43). After drug-protein interaction,
the stability of protein increases, requiring more energy for its denaturation.

For the first time, TPP was used to explore protein-
protein interactions in 2014. This process is accomplished
by providing ATP to living cells; the binding of ATP to pro-
teins significantly stabilizes them against high tempera-
tures. The stability of ATP-bound proteins can also be ex-
amined by the TPP method after adding ATP to cell extracts,
confirming the accuracy of the findings (50).

In another study, several types of kinase inhibitors
were used to investigate the efficacy of TPP. Kinases are en-
zymes that perform critical regulatory functions in cellu-
lar pathways. By TPP, it was possible to identify receptor-
ligand interactions using a wide range of kinase inhibitors
such as staurosporine and GSK3182571. These inhibitors
changed kinases’ target proteins’ melting temperatures,
as well as the thermal profiles of the regulatory subunits
of the kinase complex (50).

Vemurafenib, which is used to treat Melanoma, causes
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severe photosensitivity and increases the levels of proto-
porphyrins (60). Based on the TPP method, it was revealed
that after treating with vemurafenib, the main proteins af-
fected were its cognate target, BRAF (61), and the off-target,
ferrochelatase (FECH) (50). Ferrochelatase is dysregulated
in protoporphyria, and its inhibition causes photosensitiv-
ity, a side effect of vemorafenib (62). Also, studies showed
that alectinib, a second-generation anaplastic lymphoma
kinase (ALK) inhibitor, was associated with photosensitiv-
ity (63), which also seems to be related to the effect of this
drug on FECH. These studies proved that TPP could be used
as a high-performance independent technique to study
ligand-target interactions in cells.

Panobinostat, a histone deacetylase inhibitor, is an an-
ticancer chemical substance used to treat diseases like
myeloma and other malignancies (64). This drug has un-
desirable side effects such as hypothyroidism and seizures,
indicating that it has off-target proteins (65). Recently, the
TPP method was employed to explore these off-target pro-
teins causing the drug’s side effects (41, 50). Since tyrosine
is essential for the biosynthesis of thyroid hormones, sup-
pressing phenylalanine hydroxylase reduces thyroid hor-
mones’ production. On the other hand, it has been shown
in various studies that tyrosine levels increase in tyrosine-
mia (66, 67). According to the results of a trial, panobi-
nostat was suggested as an appropriate drug to treat ty-
rosinemia since it inhibits tyrosine synthesis by suppress-
ing phenylalanine hydroxylase (36).

Drug repurposing is one of the essential applications
of TPP (36). In addition to drug discovery, TPP can be used
to analyze protein-protein interactions, as well as proteins’
functions and post-translational changes (68).

The protein thermal curve, which was generated and
applied by the Savitski’s lab to purify proteins, was intro-
duced as a strategy to detect drugs’ targets. The steps of
this method have been illustrated in Figure 5 and will be
described below.

2.5.1. Sample Preparation

Based on the purpose of the study, two distinct sam-
ples, intact cells, and cell extracts, are prepared for identi-
fying indirect and direct targets, respectively. Using cell ex-
tracts, due to cell lysis and the dilution of cellular metabo-
lites, cells’ normal metabolism is disrupted. As a result
of cell explosion, the structure of cells falls apart, so only
direct targets will be recognized. On the other hand, us-
ing intact cells, since cellular metabolism is preserved, up-
stream proteins can be recognized as indirect targets (Fig-
ure 5, step 1) (69).

2.5.2. Drug/Thermal Treatment

In this section, prepared samples are incubated with
the desired drug at a temperature range (Figure 5, step 2).
The selection of the drug concentrations is directly related
to the next step, and just one dose or a concentration range
can be used. When only one concentration is used, cells are
exposed to a thermal range, called temperature range TPP
(TPP-TR). In this approach, most of the drug’s targeted pro-
teins can be identified. In the methods employing a con-
centration range (i.e., TPP-CCR), samples are treated with a
concentration range of the combination at a unique tem-
perature.

Recently, two-dimensional TPP has been developed, in
which cells are examined at different drug concentrations
and temperature ranges. This test provides the ability to
designate the desired combination to effectively and im-
mediately identify the target with high sensitivity. For
instance, phenylalanine hydroxylase is an indirect target
for panobinostat, which was not detectable by the TPP-TR
method.

2.5.3. Extraction of Soluble Proteins

After treating cells with the drug and heat, they will be
lysed, so denatured proteins can be removed using an ul-
tracentrifuge (Figure 5, step 3) (34).

2.5.4. Protein Digestion and Peptide Labeling

At this stage, proteins are decomposed into peptides
based on existing protocols (70). Then the isobaric tan-
dem mass tags (TMT) method is applied for labeling. Be-
fore being subjected to mass spectrometry (MS), these la-
bels have the same mass, but after MS, they are fragmented
and yield reporter ions with different masses. These quan-
titative properties are compared between different experi-
ments with similar MS conditions (Figure 5, step 4) (44).

2.5.5. MS Analysis and Data Processing

After MS analysis, the drug’s target proteins can be
identified by comparing the control and treated samples.
Most proteins are affected by ligand binding, but some tar-
get proteins do not show significant changes in their melt-
ing temperatures. By comparing the untreated and treated
samples, the soluble proteins that have been affected by
the drug can be easily recognized.

3. Conclusions

The drug discovery pipeline must respond quickly
and effectively to the industry-wide challenges of enroll-
ment rates and the pressures of strict regulatory require-
ments. Therefore, "omics" biology approaches are the most
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Figure 5. The thermal proteome profiling (TPP) method can be conducted in each of the three modes: (1) compound concentration range (TPP-CCR); (2) temperature range
(TPP-TR); and (3) two-dimensional TPP (2D-TPP). The general procedure has been described in (43).

helpful tools in the target identification process. High-
throughput proteomic technologies, which deliver a few
thousand data points at just one run, have been expanded
to drug discovery processes. Since the TPP method lies at
the interface between proteomic and metabolic areas, it
can help to answer several fundamental biological ques-
tions. The TPP method is used to solve many problems in
drug discovery. Most notably, it facilitates the identifica-
tion of the markers predicting drug efficacy and toxicity,
provides an unbiased measurement of drug-target inter-
actions and a rationale for understanding drugs’ adverse
clinical outcomes, and suggests the repurposing of drugs
for the treatment of other diseases (36).
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