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Abstract

Background: Exercise training through various mechanisms leads to correct telomere homeostasis. The potential role of high-
intensity interval training (HIIT) to keep up the telomere length has not been recognized in skeletal muscle.
Objectives: This study investigated the influence of eight weeks of HIIT with short-term interval (HIITSh) and long-term interval
(HIITL), and four weeks of detraining on the regulation of some pathways maintaining telomere length in skeletal muscle.
Methods: Fifty-four male Wistar rats were randomly assigned into HIITSh, HIITL, and control groups. Rats were sacrificed after the
end of the intervention (eight weeks of training and four weeks of detraining). Gastrocnemius muscle was collected, and telomerase
activity, p53 protein, total oxidative status (TOS), and total antioxidant capacity (TAC) levels were measured.
Results: We found no change in telomerase activity, p53, TOS, and TAC levels in both HIIT groups compared to the control group (P >
0.05). In addition, the p53 level was higher in the detrained HIITSh group than the control group (P = 0.004), and the TOS level was
higher in the detrained HIITSh group than both HIIT groups.
Conclusions: Short-term HIIT does not improve telomere length and some pathways contributing to maintaining telomere length
in skeletal muscle. The training protocol’s duration is an essential factor in activating telomerase as a mechanism to keep up telom-
ere length in skeletal muscle.
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1. Background

Physical activity (PA) is an inexpensive therapeutic
strategy to prevent disease and extend healthspan (1). With
increasing age, the physiological decline of muscle mass
and strength must be counteracted to avoid the impair-
ment of physical functions. Physical activity prevents func-
tional decline among older people (2). Indeed, low-level PA
may cause a vicious cycle that leads to disability and an in-
creased incidence of adverse health outcomes. Nowadays,
practicing PA as early as possible is highly recommended
in the adolescent period (3). In particular, regular PA could
counteract several biological characteristics of the aging
process, such as oxidative stress and telomere attrition (4-
6).

The telomere that is located at the end of all chromo-
somes is the specialized nucleoprotein structure. It acts as

a protective cap and contributes to the integrity and sta-
bility of the genome (4). Telomere shortening is one of the
critical hallmarks of aging and a risk factor associated with
several age-related diseases such as type 2 diabetes, coro-
nary artery disease, and Alzheimer’s disease (7).

Some mechanisms have been identified to prevent the
loss of telomere length and thus compensate for telom-
ere shortening. The ribonucleic protein-enzyme complex
is the most comprehensive mechanism for telomerase ex-
tension. This complex synthesizes telomere repeats using
a specific RNA template of the interval telomere sequence
(6, 8). Human studies have shown that telomerase activ-
ity is vital in germline proliferating and normal somatic
cells to maintain correct telomere length homeostasis, de-
laying senescence and tissue aging (9, 10). However, telom-
erase activity is influenced by various environmental fac-
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tors, first of all, oxidative stress (11, 12), either in proliferat-
ing cells or in post-mitotic tissues such as skeletal muscle
(13).

It is widely accepted that a well-structured protocol of
PA, depending on the characteristics of exercise (i.e., type,
intensity, duration, and frequency), can ameliorate the re-
dox homeostasis of cells under physiological and patho-
logical conditions (14, 15). On the other hand, PA reduces
oxidative stress, increases telomerase activity (16), and pos-
sibly preserves telomere length.

High-intensity interval training (HIIT) is considered
an adequate substitute to conventional endurance train-
ing to induce similar or even more significant changes
in health and physiological performance-related markers
for all populations (17, 18). A recent study demonstrated
that telomerase activity did not change after HIIT protocols
(short and long-term) and following four weeks of detrain-
ing. In contrast, p53 protein in HIIT with long-term interval
group significantly increased in the cardiac muscle (19). It
seems that increasing p53 does not affect telomerase short-
ening. Further, other authors have shown that short-term
HIIT (eight and 12 weeks) can increase telomerase activity
in peripheral blood mononuclear cells (PBMC) (20).

However, it has been shown that the HIIT-induced
physiological adaptations vary depending on the number
of intervals, duration, and intensity of training, and dura-
tion and activity patterns during recovery.

2. Objectives

The study aimed to examine the effects of two HIIT
protocols with different work/rest intervals under a sim-
ilar total time of each training session, followed by four
weeks of detraining on some pathways maintaining telom-
ere length (telomerase activity, p53 protein expression, to-
tal oxidative status (TOS), and total antioxidant capacity
(TAC) levels) in rat gastrocnemius muscle. Moreover, we
performed a correlation analysis among all variables to
identify a possible interaction.

3. Methods

3.1. Animals and Exercise Training Protocols

Fifty-four male Wistar rats (three months old) were
purchased from Birjand University of Medical Sciences, Bir-
jand, Iran, and were randomly divided into three groups:
HIIT with short-term interval (HIITSh, n = 18), long-term in-
terval (HIITL, n = 18), and control (CT, n = 18). Rats were
weighed at the beginning and end of the experimental pro-
tocols. All the experimental protocols followed the guide-
lines for the use and care of laboratory animals. Rats used

in this study were a subset of the cohort in our recently
published papers (19, 21).

We provided a regular light-dark cycle (12 : 12 h) at 22±
2°C in the animal house of the University of Birjand, with
standard rodent chow and water ad libitum. After five days
of acclimatization to treadmill running at 10 m/min for 10
min at a zero-degree incline (22), rats performed HIITSh
and HIITL (at the intensity of ~ 80 - 95% VO2max) five days
a week for eight weeks. Before and after each training ses-
sion, warm-up and cool-down were performed for five min-
utes at ~ 40% VO2max (23).

The HIITSh and HIITL protocols included 16 × 1 and 4
× 4 min intervals at the intensity of ~ 80 - 95% VO2max

separated by one and four minutes active rests at 50 - 60%
VO2max, respectively (19, 21, 24). The first session of HIITSh
and HIITL started with eight and two work intervals, re-
spectively, and continued as shown in Table 1. Moreover,
only in the first session were rats stimulated to run on a
treadmill through a mild electric shock (0.5 mA, 1 Hz) ac-
companied by an acoustic actuator (impact on the tread-
mill wall) (25). In the subsequent sessions, an auditory
stimulus was used to stimulate rats.

After eight weeks of training, half of the rats in each
group (n = 9) were randomly selected for sacrifice, and the
other half were subjected to a detraining program for four
weeks. During the detraining period, all animals had free
access to food and water and were kept at rest in standard
polycarbonate cages (three rats per cage). In the detrain-
ing period, two rats from the CT group and one rat from
each training group died. Finally, seven rats in the CT group
and eight in each training group remained and were sacri-
ficed at the end of the detraining period.

3.2. Tissue Preparation

Forty-eight hours after the last training session and at
the end of the detraining period following an overnight
fast of about 12 hours, rats were sacrificed under deep anes-
thesia using a mixture of ketamine and xylazine (100 and
10 mg/kg body weight, respectively). Gastrocnemius mus-
cles were removed (with appropriate surgical supplies in
less than five minutes), washed with normal saline, frozen
in liquid nitrogen, and stored at -80°C for further analysis.

3.3. Tissue Homogenization

Whole tissue was incised, weighed up, and lysed in
phosphate-buffered saline (PBS, pH 7.4, 100 mM, 100 mg tis-
sue/1 ml PBS) through a homogenizer. A protease inhibitor
cocktail (Problock, Goldbio Inc., USA) was added to the lysis
buffer to prevent protein degradation. The homogenized
tissue samples were centrifuged (6,000 rpm, 10 min, 4°C).
The supernatants were collected and then aliquoted for the
subsequent assays.
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Table 1. High-Intensity Interval Training Protocols

Weeks
High-Intensity Interval Training

HIITL HIITSh

1
8 - 12 one-minute work interval, 35 m/min 2 - 3 four-minute work interval, 35 m/min

8 - 12 one-minute active recovery, 16 m/min 2 - 3 four-minute active recovery, 16 m/min

2
12 - 16 one-minute work interval, 35-37 m/min 3 - 4 four-minute work interval, 35-37 m/min

12 - 16 one-minute active recovery, 16 m/min 3 - 4 four-minute active recovery, 16 m/min

3
16 one-minute work interval, 37 - 40 m/min 4 four-minute work interval, 37 - 40 m/min

16 one-minute active recovery, 16 m/min 4 four-minute active recovery, 16 m/min

4 - 8

16 one-minute work interval, 40
m/min

To end of the eighth week

4 four-minute work interval, 40
m/min

To end of the eighth week
16 one-minute active recovery, 16
m/min

4 four-minute active recovery, 16
m/min

3.4. Telomerase Activity

A polymerase chain reaction enzyme-linked im-
munoassay (PCR-ELISA) was used to determine telomerase
activity (Telo TAGGG PCR ELISA kit, Roche, Boehringer
Mannheim, Mannheim, Germany). After 20 min cen-
trifugation at 4°C and 16,000 g, the supernatant of the
tissues lysate was stored at -80°C for the sensitive protein
content assay (Bradford method). The stored samples
were used for the determination of telomerase activity.
A telomeric repeat (TTAGGG) was briefly added to the 3′

end of a synthetic biotin-labeled primer by telomerase.
Following the elongation/amplification steps, 20 µL of
a denaturation solution was added, containing 5 µL of
the amplification product and hybridization buffer. After
two hours of incubation, 100 µL of the anti-digoxigenin
peroxidase antibody reagent was added to the microplate
wells, and after two hours of incubation, 100 µL of 3, 3′, 5,
5′-tetramethyl benzidine (TMB) was added as the substrate
reagent. Finally, the peroxidase catalyzed reaction was
arrested with an acidic stop solution. The absorbance
(OD) of all wells and the reference was read at 450 nm
and 620 nm, respectively. The average OD of the control
group was considered 100%, and the intervened results
were expressed as the ratio of the OD to the mean OD of
controls.

3.5. Determination of p53 Protein, TOS, and TAC Levels

The p53 protein, TOS, and TAC levels in the supernatant
of the tissue homogenates were determined using the
enzyme-linked immunosorbent assay (Rat p53 ELISA kit,
ZellBio GmbH, Ulm, Germany), chemical colorimetric (TOS
assay kit, ZellBio GmbH, Ulm, Germany), and chemical col-
orimetric (TAC assay kit, ZellBio GmbH, Ulm, Germany)
methods, respectively. The rat p53, TOS, and TAC assay sen-
sitivities were 1 pg/mL, 0.5 µM, and 0.1 mM, respectively.

The assays precision for p53, TOS, and TAC was 5.6%, 5.1%,
and 4.6%, respectively. In addition, the total protein of the
samples was assayed (Bradford total protein assay kit, Zell-
Bio GmbH, Ulm, Germany), and the TAC, TOS, and p53 levels
were expressed asµmol/mg,µmol/mg, and pg/mg protein,
respectively. All kits were purchased from Padgin Teb Com-
pany (Tehran, Iran).

3.6. Statistical Analysis

The Shapiro-Wilk test was employed to check the nor-
mality assumption and Levene’s test to examine variance
homogeneity. All analyses were conducted with a statisti-
cal software package (SPSS version-20 software), and data
were presented as mean ± standard deviation (SD). Com-
parisons between groups were made using the one-way
ANOVA and Tukey’s post hoc test. Given that the assump-
tion of homogeneity of variance was violated for p53 data,
the Welch method and Dunnett’s test were used for anal-
ysis. Also, the paired sample t test was used to compare
intra-group weights pre and post-intervention. The Pear-
son correlation coefficient was used to analyze the correla-
tion between all variables. P values≤0.05 were considered
statistically significant.

4. Results

4.1. Body Weight

As shown in Figure 1, there was no significant differ-
ence in body weight between the groups at the beginning
of the study (P = 0.91). In addition, a significant increase
was observed in all groups after exercise training and de-
training periods compared to pre-intervention (P ≤ 0.05).
Also, there was no significant difference in body weight be-
tween the groups after the detraining period compared to
the beginning of the detraining period (P = 0.09).
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Figure 1. Body weight changes after eight weeks of high-intensity interval training and four weeks of detraining. CT, control during the training period; HIITSh, high-intensity
interval training with short-term interval; HIITL, high-intensity interval training with long-term interval; D CT, control during the detraining period; D HIITSh, detraining high-
intensity interval training with short-term interval; D HIITL, detraining high-intensity interval training with long-term interval. * P≤ 0.05 compared to pre-intervention.

4.2. Telomerase Activity

No change was found in telomerase enzyme activity af-
ter the training and detraining periods between groups (P
= 0.88) (Figure 2A).

4.3. Protein Expression Level of p53

No change was found in the p53 protein levels after the
training period in both HIIT groups, but a tendency to in-
crease was observed in the HIITL group (18%) compared to
the control group. However, after the detraining period,
the p53 levels improved significantly in the D HIITSh group
compared to the D CT group (P = 0.004) and decreased sig-
nificantly in the D CT group compared to the CT group (P =
0.03) (Figure 2B).

4.4. Parameters Related to Redox Homeostasis

No change was found in the TOS level after eight weeks
of training in both HIIT groups compared to the CT group,
but a decreasing trend was found in the HIITSh (23%) and
HIITL (20%) groups compared to the CT group. In addi-
tion, the TOS level was significantly higher in the D HIITSh
group than in the HIITSh and HIITL groups (P = 0.001 and P
= 0.002, respectively) (Figure 2C).

The results also revealed no significant change in the
TAC level during the training period in both HIIT groups,
but it was significantly lower in the D CT group than in the
HIITL group (P = 0.023) (Figure 2D).

4.5. Associations Between Variables

The correlations between variables are reported in Ta-
ble 2. The positive associations between the p53 and TAC
levels are shown in Figure 3. However, no association was
found between telomerase enzyme activity and p53, TAC,
and TOS levels. There was also no association between TAC
and TOS.

5. Discussion

Many studies have introduced telomerase enzyme ac-
tivity as a potent indicator of telomere length to exam-
ine cellular viability or genomic stability and disease pro-
cesses (26). Similar to Radak et al.’s results (27), we found
that both HIIT protocols did not change telomerase activ-
ity. As suggested by others (27), we hypothesized that eight
weeks of these exercise protocols are not enough to mod-
ify the telomerase activity. Indeed, Ludlow et al. found that
only when the exercise training program was sustained for
a more extended period (≈ one year), telomerase activity
was significantly increased in rat skeletal muscle (28).

Moreover, it has been suggested that a reduction or in-
activation of telomerase activity plays a direct causal role
in mammalian aging (29, 30). Therefore, given the pos-
sibility that telomerase activity is reduced in elderly sub-
jects/animals compared to young subjects/animals, the im-
portance and role of these exercise protocols in the de-
velopment of telomerase activity in older rats can not be
denied. However, estimation of enzymatic activity mod-
ification at optimal levels could be more challenging in
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Figure 2. A, Telomerase activity; B, p53; C, TOS; and D, TAC levels after eight weeks of high-intensity interval training and four weeks of detraining. CT, control during the training
period; HIITSh, high-intensity interval training with short-term interval; HIITL, high-intensity interval training with long-term interval; D CT, control during the detraining
period; D HIITSh, detraining high-intensity interval training with short-term interval; D HIITL, detraining high-intensity interval training with long-term interval; TOS, total
oxidative status; TAC, total antioxidant capacity. * P≤ 0.05 compared to D CT, †P≤ 0.05 compared to D HIITSh, ¥ P≤ 0.05 compared to HIITL.

young subjects. In support of this assumption, Osthus et al.
demonstrated that older endurance athletes (66 - 77 years)
had improved telomeres homeostasis compared to older
people with lower physical activity levels. Differences were
observed between young endurance athletes (22 - 27 years)
and young non-athletes (26).

Often referred to as the “Guardian of Genome,” p53
is a master regulator of genome integrity to activate the
transcription of many essential genes for cell cycle con-
trol and apoptosis followed by DNA damage (28-31). More-
over, p53 binds to several loci in the cellular genome poten-

tially, which may not be associated with transcription con-
trol. This results from a reported genome-wide scan study
about p53 (32). In particular, Tutton et al. showed that p53
could bind the sites in the subtelomeric region close to the
terminal telomere repeat tracts. They proposed that p53
binding to these regions confers local chromatin changes
associated with increased genome stability (33). Consid-
ering that p53 is also implicated as a critical modulator
of skeletal muscle in exercise-induced mitochondrial bio-
genesis and substrate metabolism (34), many studies have
aimed to identify exercise prescription guidelines to target
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Table 2. Pearson Correlation Matrix a

Telomerase Activity p53 TAC TOS

Telomerase activity
- 0.18 A 0.01 A -0.18 A

- 0.25 B 0.94 B 0.19 B

p53
0.18 A - 0.66 A 0.18 A

0.25 B - 0.0001 B, C 0.24 B

TAC
0.01 A 0.66 A - 0.17 A

0.94 B 0.0001 B, C - 0.22 B

TOS
-0.18 A 0.18 A 0.17 A -

0.19 B 0.24 B 0.22 B -

Abbreviations: TOS, total oxidative status; TAC, total antioxidant capacity.
a For each comparison between the indicated variables, A in superscript indicates the Pearson correlation value, while B in superscript indicates the P-value and C in
superscript highlights significant correlations (P≤ 0.05).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60

TA
C

 (
µ

m
o

l/
m

g
)

p53 (pg/mg)

Figure 3. Significant positive correlation between p53 and TAC in the gastrocnemius muscle. TAC, total antioxidant capacity.

p53 signaling strategically.

Similar to the results of Safdar et al. (35), no change in
the p53 protein levels was observed following both models
of HIIT in our study. However, considering the mean values
of changes, we found that HIITL increased the protein level
of p53 by 18%. Ludlow et al. observed increased expression
of the p53 gene in skeletal muscle after one year of exercise
(voluntary wheel running) (28). On the other hand, they
found that the expression of the p53 gene declined over
time (with age).

From our point of view, we think that the training pe-
riod and age of animals used in the study could be impor-

tant factors in the results obtained from the present study.
However, it must be considered that compared to con-
trol animals (CT group), the training period keeps the ex-
pression of p53 protein more stable, even during the post-
training period. Therefore, although the training does not
significantly increase the p53 levels in muscle cells, HIIT is
likely to reduce cellular impairment and delay muscle ag-
ing by maintaining its level in the cell. This effect probably
will remain with detraining.

Oxidative stress can be caused by excessive reactive
oxygen species (ROS) production, leading to DNA damage
and senescence or apoptosis (36). Several authors have
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shown that oxidative stress is closely correlated with al-
tered telomeres homeostasis (37). Generally, regular exer-
cise can protect telomeres from shortening by reducing ox-
idative stress levels (38). In the present study, we observed
that TOS levels in the HIIT groups decreased compared to
the control group (according to the change of mean val-
ues, a decrease of 19% in the HIITL group and a decrease of
23% in the group HIITSh) with no change in TAC after the
training. Many studies have reported the effect of exercise
training on the oxidant-antioxidant system. De Araujo et
al. showed that oxidative stress temporarily increased af-
ter six weeks of HIIT; then, it decreased after 12 weeks of
continuous training; but they did not see any significant
changes in the antioxidant system in the gastrocnemius
muscle of Wistar rats, which was attributed to the insignif-
icant disturbance of ROS (39). Based on the results of de
Araujo et al. (39), if HIIT continues for a more extended
period, it will probably exhibit significant effects on the
TOS level. On the other hand, it is accepted that a higher
level of ROS leads to more adaptation in the antioxidant
system (40). In this regard, Hyatt et al. displayed that 10
days of treadmill training enhanced the level of the an-
tioxidant index in the heart and plantaris muscles, while
no significant changes were observed in the soleus mus-
cle. The researchers stated that different antioxidant adap-
tations in the plantaris, heart, and soleus muscles are re-
lated to the primary content of intrinsic antioxidants be-
fore training or oxidative stress levels owing to exercise. It
has been found that the fast-glycolytic muscle fiber phe-
notype in the plantar may tolerate a higher level of oxida-
tive stress and be replaced by rising antioxidant proteins
to a greater degree than the more oxidative-fiber types of
soleus and cardiac muscle (41).

Given that the gastrocnemius is an interstitial muscle
(a mixture of fast and slow-twitch fibers), it is likely that in
the present study, the training-induced ROS in the gastroc-
nemius muscle did not increase to such an extent to cause
significant changes in antioxidant capacity. Indeed, after
eight weeks of training, a reduction in oxidative stress was
observed, probably indicating that training altered the an-
tioxidant content, but it was not potent enough to increase
TAC. Watson et al. showed that the levels of uric acid, β-
carotene, and glutathione (GSH) grew considerably follow-
ing regular exercise, while TAC declined meaningfully. The
lack of connotation between internal antioxidants and TAC
was attributed to obstacles in the TAC analysis (42). How-
ever, a review of studies conducted by others determined
contrary findings in this regard. We can refer to the inves-
tigated tissues, the time course, the type (43), and the in-
tensity of exercise training protocols to explain inconsis-
tencies in existing reports.

Concerning the effect of detraining on oxidative stress

and antioxidant markers, Fatouros et al. demonstrated
that endurance training possibly diminishes basal and
exercise-induced lipid peroxidation and enhances protec-
tion against oxidative stress by rising TAC. It is notewor-
thy that detraining may converse these training-induced
adaptations (44). Radak et al. also proposed that the ad-
vantageous effects of training can change due to detrain-
ing (45). Sheikholeslami-Vatani et al. showed that sprint
exercise training could induce adaptations in lipid perox-
idation and the antioxidant system, which would be re-
versed due to detraining (40). There is no agreement on
the place of ROS production in skeletal muscle during de-
training periods. In this regard, Whidden et al. proposed
the xanthine as a possible source of oxidants in rat skele-
tal muscle through lengthy periods of inactivity (46). On
the other hand, Kavazis et al. propounded that mitochon-
dria are a significant source of ROS production in skeletal
muscle during inactivity (47). Sheikholeslami-Vatani et al.
identified that injuries imposed due to the training could
increase ROS during detraining (40). In the present study,
it was observed that during the detraining period, there
was a tendency for the TOS level to increase so that the in-
creased TOS level was significantly higher in the detrain-
ing HIITSh group than in both HIIT groups. This can be
confirmed by other studies due to the deletion of adap-
tations to the antioxidant capacity during training cessa-
tion. Overall, exercise training may act as a stimulus for
reducing oxidative stress, primarily when performed con-
tinuously. Nevertheless, the effects of HIITL are more sta-
ble. However, more studies are required to confirm these
results.

In this study, we identified a significant positive asso-
ciation between the levels of p53 and TAC. However, our
results did not show any significant correlation between
other variables. Therefore, HIIT could help prevent muscle
aging by increasing TAC.

5.1. Limitations

This study did not examine the oxidants and antiox-
idants content and other possible mechanisms affecting
telomere length maintenance. This is while the oxidants
and antioxidants content could more accurately indicate
the possible effects and differences of these two protocols
and increase the general knowledge of HIIT. In this regard,
detailed studies must be performed to assess the effect of
long periods of the two investigated protocols and subse-
quent detraining on other pathways affecting the telomere
length maintenance and oxidant and antioxidant content.

5.2. Conclusions

Telomeres and mitochondria are known as the main
factors controlling cellular aging. According to this study,
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short-period exercise training does not change telomerase
activity in rat skeletal muscle, and the time course is an
essential factor in increasing the activity of skeletal mus-
cle telomerase in response to exercise training. However,
short-period exercise training may help maintain telom-
ere length through other pathways such as attenuation of
oxidative stress. The time of the work intervals and the
recovery periods between intervals of HIIT induce differ-
ent and persistent effects. High-intensity interval train-
ing with long-term intervals would be more effective be-
cause of adaptations in the pathways maintaining telom-
eres length (attenuation of oxidative stress) and improv-
ing the mitochondrial function and content (possibly by
increasing p53 levels) with persistent, lasting effects on
controlling muscle aging.
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